首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given two graphs, a mapping between their edge‐sets is cycle‐continuous , if the preimage of every cycle is a cycle. The motivation for this definition is Jaeger's conjecture that for every bridgeless graph there is a cycle‐continuous mapping to the Petersen graph, which, if solved positively, would imply several other important conjectures (e.g., the Cycle double cover conjecture). Answering a question of DeVos, Ne?et?il, and Raspaud, we prove that there exists an infinite set of graphs with no cycle‐continuous mapping between them. Further extending this result, we show that every countable poset can be represented by graphs and the existence of cycle‐continuous mappings between them.  相似文献   

2.
Lovász and Plummer conjectured in the 1970's that cubic bridgeless graphs have exponentially many perfect matchings. This conjecture has been verified for bipartite graphs by Voorhoeve (1979), and for planar graphs by Chudnovsky and Seymour (2008). In this paper, we provide the first superlinear bound in the general case.  相似文献   

3.
The Cycle Double Cover Conjecture claims that every bridgeless graph has a cycle double cover and the Strong Cycle Double Conjecture states that every such graph has a cycle double cover containing any specified circuit. In this paper, we get a necessary and sufficient condition for bridgeless graphs to have a strong 5-cycle double cover. Similar condition for the existence of 5-cycle double covers is also obtained. These conditions strengthen/improve some known results.  相似文献   

4.
In the first part of this article, we employ Thomason's Lollipop Lemma 25 to prove that bridgeless cubic graphs containing a spanning lollipop admit a cycle double cover (CDC) containing the circuit in the lollipop; this implies, in particular, that bridgeless cubic graphs with a 2‐factor F having two components admit CDCs containing any of the components in the 2‐factor, although it need not have a CDC containing all of F. As another example consider a cubic bridgeless graph containing a 2‐factor with three components, all induced circuits. In this case, two of the components may separately be used to start a CDC although it is uncertain whether the third component may be part of some CDC. Numerous other corollaries shall be given as well. In the second part of the article, we consider special types of bridgeless cubic graphs for which a prominent circuit can be shown to be included in a CDC. The interest here is the proof technique and therefore we only give the simplest case of the theorem. Notably, we show that a cubic graph that consists of an induced 2k‐circuit C together with an induced 4k‐circuit T and an independent set of 2k vertices, each joined by one edge to C and two edges to T, has a CDC starting with T.  相似文献   

5.
The strong cycle double cover conjecture states that for every circuit C of a bridgeless cubic graph G, there is a cycle double cover of G which contains C. We conjecture that there is even a 5-cycle double cover S of G which contains C, i.e. C is a subgraph of one of the five 2-regular subgraphs of S. We prove a necessary and sufficient condition for a 2-regular subgraph to be contained in a 5-cycle double cover of G.  相似文献   

6.
《Discrete Mathematics》2023,346(2):113249
Barnette's Conjecture claims that all cubic, 3-connected, planar, bipartite graphs are Hamiltonian. We give a translation of this conjecture into the matching-theoretic setting. This allows us to relax the requirement of planarity to give the equivalent conjecture that all cubic, 3-connected, Pfaffian, bipartite graphs are Hamiltonian.A graph, other than the path of length three, is a brace if it is bipartite and any two disjoint edges are part of a perfect matching. Our perspective allows us to observe that Barnette's Conjecture can be reduced to cubic, planar braces. We show a similar reduction to braces for cubic, 3-connected, bipartite graphs regarding four stronger versions of Hamiltonicity. Note that in these cases we do not need planarity.As a practical application of these results, we provide some supplements to a generation procedure for cubic, 3-connected, planar, bipartite graphs discovered by Holton et al. (1985) [14]. These allow us to check whether a graph we generated is a brace.  相似文献   

7.
It has been shown by MacGillivray and Seyffarth (Austral. J. Combin. 24 (2001) 91) that bridgeless line graphs of complete graphs, complete bipartite graphs, and planar graphs have small cycle double covers. In this paper, we extend the result for complete bipartite graphs, and show that the line graph of any complete multipartite graph (other than K1,2) has a small cycle double cover.  相似文献   

8.
Acycle double cover of a graph,G, is a collection of cycles,C, such that every edge ofG lies in precisely two cycles ofC. TheSmall Cycle Double Cover Conjecture, proposed by J. A. Bondy, asserts that every simple bridgeless graph onn vertices has a cycle double cover with at mostn–1 cycles, and is a strengthening of the well-knownCycle Double Cover Conjecture. In this paper, we prove Bondy's conjecture for 4-connected planar graphs.  相似文献   

9.
Bojan Mohar 《Discrete Mathematics》2010,310(20):2595-2599
A “folklore conjecture, probably due to Tutte” (as described in [P.D. Seymour, Sums of circuits, in: Graph Theory and Related Topics (Proc. Conf., Univ. Waterloo, 1977), Academic Press, 1979, pp. 341-355]) asserts that every bridgeless cubic graph can be embedded on a surface of its own genus in such a way that the face boundaries are cycles of the graph. Sporadic counterexamples to this conjecture have been known since the late 1970s. In this paper we consider closed 2-cell embeddings of graphs and show that certain (cubic) graphs (of any fixed genus) have closed 2-cell embedding only in surfaces whose genus is very large (proportional to the order of these graphs), thus providing a plethora of strong counterexamples to the above conjecture. The main result yielding such counterexamples may be of independent interest.  相似文献   

10.
《Discrete Mathematics》2020,343(7):111904
An even cycle decomposition of a graph is a partition of its edges into cycles of even length. In 2012, Markström conjectured that the line graph of every 2-connected cubic graph has an even cycle decomposition and proved this conjecture for cubic graphs with oddness at most 2. However, for 2-connected cubic graphs with oddness 2, Markström only considered these graphs with a chordless 2-factor. (A chordless 2-factor of a graph is a 2-factor consisting of only induced cycles.) In this paper, we first construct an infinite family of 2-connected cubic graphs with oddness 2 and without chordless 2-factors. We then give a complete proof of Markström’s result and further prove this conjecture for cubic graphs with oddness 4.  相似文献   

11.
In 1971, Fulkerson made a conjecture that every bridgeless cubic graph contains a family of six perfect matchings such that each edge belongs to exactly two of them; equivalently, such that no three of the matchings have an edge in common. In 1994, Fan and Raspaud proposed a weaker conjecture which requires only three perfect matchings with no edge in common. In this paper we discuss these and other related conjectures and make a step towards Fulkerson’s conjecture by proving the following result: Every bridgeless cubic graph which has a 2-factor with at most two odd circuits contains three perfect matchings with no edge in common.  相似文献   

12.
The problem of establishing the number of perfect matchings necessary to cover the edge‐set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this article, we prove that deciding whether this number is at most four for a given cubic bridgeless graph is NP‐complete. We also construct an infinite family of snarks (cyclically 4‐edge‐connected cubic graphs of girth at least 5 and chromatic index 4) whose edge‐set cannot be covered by four perfect matchings. Only two such graphs were known. It turns out that the family also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with m edges has length at least , and we show that this inequality is strict for graphs of . We also construct the first known snark with no cycle cover of length less than .  相似文献   

13.
Cai an Corneil (Discrete Math. 102 (1992) 103–106), proved that if a graph has a cycle double cover, then its line graph also has a cycle double cover, and that the validity of the cycle double cover conjecture on line graphs would imply the truth of the conjecture in general. In this note we investigate the conditions under which a graph G has a nowhere zero k-flow would imply that L(G), the line graph of G, also has a nowhere zero k-flow. The validity of Tutte's flow conjectures on line graphs would also imply the truth of these conjectures in general.  相似文献   

14.
Tutte's 5‐flow conjecture from 1954 states that every bridgeless graph has a nowhere‐zero 5‐flow. It suffices to prove the conjecture for cyclically 6‐edge‐connected cubic graphs. We prove that every cyclically 6‐edge‐connected cubic graph with oddness at most 4 has a nowhere‐zero 5‐flow. This implies that every minimum counterexample to the 5‐flow conjecture has oddness at least 6.  相似文献   

15.
Yutsis graphs are connected simple graphs which can be partitioned into two vertex-induced trees. Cubic Yutsis graphs were introduced by Jaeger as cubic dual Hamiltonian graphs, and these are our main focus.Cubic Yutsis graphs also appear in the context of the quantum theory of angular momenta, where they are used to generate summation formulae for general recoupling coefficients. Large Yutsis graphs are of interest for benchmarking algorithms which generate these formulae.In an earlier paper we showed that the decision problem of whether a given cubic graph is Yutsis is NP-complete. We also described a heuristic that was tested on graphs with up to 300,000 vertices and found Yutsis decompositions for all large Yutsis graphs very quickly.In contrast, no fast technique was known by which a significant fraction of bridgeless non-Yutsis cubic graphs could be shown to be non-Yutsis. One of the contributions of this article is to describe some structural impediments to Yutsisness. We also provide experimental evidence that almost all non-Yutsis cubic graphs can be rapidly shown to be non-Yutsis by applying a heuristic based on some of these criteria. Combined with the algorithm described in the earlier paper this gives an algorithm that, according to experimental evidence, runs efficiently on practically every large random cubic graph and can decide on whether the graph is Yutsis or not.The second contribution of this article is a set of construction techniques for non-Yutsis graphs implying, for example, the existence of 3-connected non-Yutsis cubic graphs of arbitrary girth and with few non-trivial 3-cuts.  相似文献   

16.
A conjecture of G. Fan and A. Raspaud asserts that every bridgeless cubic graph contains three perfect matchings with empty intersection. We suggest a possible approach to problems of this type, based on the concept of a balanced join in an embedded graph. The method can be used to prove a special case of a conjecture of E. Máčajová and M. Škoviera on Fano colorings of cubic graphs.  相似文献   

17.
Rui Xu 《Discrete Mathematics》2009,309(5):1041-1042
Kriesell [M. Kriesell, Contractions, cycle double covers and cyclic colorings in locally connected graphs, J. Combin. Theory Ser. B 96 (2006) 881-900] proved the cycle double cover conjecture for locally connected graphs. In this note, we give much shorter proofs for two stronger results.  相似文献   

18.
《Discrete Mathematics》2006,306(8-9):762-778
In this paper we continue our investigations from [R. Häggkvist, K. Markström, Cycle double covers and spanning minors, Technical Report 07, Department of Mathematics, Umeå University, Sweden, 2001, J. Combin. Theory, Ser. B, to appear] regarding spanning subgraphs which imply the existence of cycle double covers. We prove that if a cubic graph G has a spanning subgraph isomorphic to a subdivision of a bridgeless cubic graph on at most 10 vertices then G has a CDC. A notable result is thus that a cubic graph with a spanning Petersen minor has a CDC, a result also obtained by Goddyn [L. Goddyn, Cycle covers of graphs, Ph.D. Thesis, University of Waterloo, 1988].  相似文献   

19.
A graph with n vertices is said to have a small cycle cover provided its edges can be covered with at most (2n ? 1)/3 cycles. Bondy [2] has conjectured that every 2-connected graph has a small cycle cover. In [3] Lai and Lai prove Bondy’s conjecture for plane triangulations. In [1] the author extends this result to all planar 3-connected graphs, by proving that they can be covered by at most (n + 1)/2 cycles. In this paper we show that Bondy’s conjecture holds for all planar 2-connected graphs. We also show that all planar 2-edge-connected graphs can be covered by at most (3n ? 3)/4 cycles and we show an infinite family of graphs for which this bound is attained.  相似文献   

20.
By Petersen's theorem, a bridgeless cubic graph has a 2‐factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3‐edge‐connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that this is in some sense best possible by constructing an infinite family of 3‐edge‐connected graphs in which every spanning even subgraph has a 5‐cycle as a component. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 37–47, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号