首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ishizaki  Fumio  Takine  Tetsuya 《Queueing Systems》1999,31(3-4):317-326
We consider a discrete-time single-server queue with arrivals governed by a stationary Markov chain, where no arrivals are assumed to occur only when the Markov chain is in a particular state. This assumption implies that off-periods in the arrival process are i.i.d. and geometrically distributed. For this queue, we establish the exact relationship between queue length distributions in a finite-buffer queue and the corresponding infinite-buffer queue. With the result, the exact loss probability is obtained in terms of the queue length distribution in the corresponding infinite-buffer queue. Note that this result enables us to compute the loss probability very efficiently, since the queue length distribution in the infinite-buffer queue can be efficiently computed when off-periods are geometrically distributed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
We study a discrete-time single-server queue where batches of messages arrive. Each message consists of a geometrically distributed number of packets which do not arrive at the same instant and which require a time unit as service time. We consider the cases of constant spacing and geometrically distributed (random) spacing between consecutive packets of a message. For the probability generating function of the stationary distribution of the embedded Markov chain we derive in both cases a functional equation which involves a boundary function. The stationary mean number of packets in the system can be computed via this boundary function without solving the functional equation. In case of constant (random) spacing the boundary function can be determined by solving a finite-dimensional (an infinite-dimensional) system of linear equations numerically. For Poisson- and Bernoulli-distributed arrivals of messages numerical results are presented. Further, limiting results are derived.  相似文献   

3.
For a class of discrete-time FIFO queueing systems with D-MAP (discrete-time Markovian arrival process), we present a distributional Little’s law that relates the distribution of the stationary number of customers in system (queue) with that of the stationary number of slots a customer spends in system (queue). Taking the multi-server D-MAP/D/c queue as an example, we demonstrate how this relation can be utilized to get the desired distribution of the number of customers. Sample numerical results are presented at the end.  相似文献   

4.
We study the behavior of a single-server discrete-time queue with batch arrivals, where the information on the queue length and possibly on service completions is delayed. Such a model describes situations arising in high speed telecommunication systems, where information arrives in messages, each comprising a variable number of fixed-length packets, and it takes one unit of time (a slot) to transmit a packet. Since it is not desirable to attempt service when the system may be empty, we study a model where we assume that service is attempted only if, given the information available to the server, it is certain that there are messages in the queue. We characterize the probability distribution of the number of messages in the queue under some general stationarity assumptions on the arrival process, when information on the queue size is delayedK slots, and derive explicit expressions of the PGF of the queue length for the case of i.i.d. batch arrivals and general independent service times. We further derive the PGF of the queue size when information onboth the queue length and service completion is delayedK=1 units of time. Finally, we extend the results to priority queues and show that when all messages are of unit length, thec rule remains optimal even in the case of delayed information.  相似文献   

5.
This paper considers the queue length distribution in a class of FIFO single-server queues with (possibly correlated) multiple arrival streams, where the service time distribution of customers may be different for different streams. It is widely recognized that the queue length distribution in a FIFO queue with multiple non-Poissonian arrival streams having different service time distributions is very hard to analyze, since we have to keep track of the complete order of customers in the queue to describe the queue length dynamics. In this paper, we provide an alternative way to solve the problem for a class of such queues, where arrival streams are governed by a finite-state Markov chain. We characterize the joint probability generating function of the stationary queue length distribution, by considering the joint distribution of the number of customers arriving from each stream during the stationary attained waiting time. Further we provide recursion formulas to compute the stationary joint queue length distribution and the stationary distribution representing from which stream each customer in the queue arrived.  相似文献   

6.
This paper considers single-server queues with several customer classes. Arrivals of customers are governed by the underlying continuous-time Markov chain with finite states. The distribution of the amount of work brought into the system on arrival is assumed to be general, which may differ with different classes. Further, the service speed depends on the state of the underlying Markov chain. We first show that given such a queue, we can construct the corresponding new queue with constant service speed by means of a change of time scale, and the time-average quantities of interest in the original queue are given in terms of those in the new queue. Next we characterize the joint distribution of the length of a busy period and the number of customers served during the busy period in the original queue. Finally, assuming the FIFO service discipline, we derive the Laplace–Stieltjes transform of the actual waiting time distribution in the original queue.  相似文献   

7.
Takine  Tetsuya 《Queueing Systems》2002,42(2):131-151
This paper considers a stationary single-server queue with multiple arrival streams governed by a Markov chain, where customers are served on an LCFS preemptive-resume basis. Service times of customers from each arrival stream are generally distributed and service time distributions for different arrival streams may be different. Under these assumptions, it is shown that the stationary joint distribution of queue strings representing from which arrival stream each customer in the system arrived and remaining service times of respective customers in the system has a matrix product-form solution, where matrices constituting the solution are given in terms of the infinitesimal generator of a certain Markov chain. Compared with the previous works, the result in this paper is more general in the sense that general service time distributions are allowed, and it has the advantage of computational efficiency. Note also that the result is a natural extension of the classical result for the LCFS-PR M/G/1 queue. Further, utilizing the matrix product-form solution, we derive a new expression of the vector Laplace–Stieltjes transform of the stationary distribution of unfinished work in the work-conserving single-server queue with multiple arrival streams governed by a Markov chain, which is given by the sum of matrix-geometric series.  相似文献   

8.
In call centers, call blending consists in the mixing of incoming and outgoing call activity, according to some call blending balance. Recently, Artalejo and Phung-Duc have developed an apt model for such a setting, with a two way communication retrial queue. However, by assuming a classical (proportional) retrial rate for the incoming calls, the short-term blending balance is heavily impacted by the number of incoming calls, which may be undesired, especially when the balance between incoming and outgoing calls is vital to the service offered. In this contribution, we consider an alternative to classical call blending, through a retrial queue with constant retrial rate for incoming calls. For the single-server case (one operator), a generating functions approach enables to derive explicit formulas for the joint stationary distribution of the number of incoming calls and the system state, and also for the factorial moments. This is complemented with a stability analysis, expressions for performance measures, and also recursive formulas, allowing reliable numerical calculation. A correlation study enables to study the system’s short-term blending balance, allowing to compare it to that of the system with classical retrial rate. For the multiserver case (multiple operators), we provide a quasi-birth-and-death process formulation, enabling to derive a sufficient and necessary condition for stability in this case (in a simple form), a numerical recipe to obtain the stationary distribution, and a cost model.  相似文献   

9.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2002,40(3):283-294
We study a discrete-time GI/Geo/1 queue with server vacations. In this queueing system, the server takes vacations when the system does not have any waiting customers at a service completion instant or a vacation completion instant. This type of discrete-time queueing model has potential applications in computer or telecommunication network systems. Using matrix-geometric method, we obtain the explicit expressions for the stationary distributions of queue length and waiting time and demonstrate the conditional stochastic decomposition property of the queue length and waiting time in this system.  相似文献   

10.
We consider a discrete-time single-server queueing model where arrivals are governed by a discrete Markovian arrival process (DMAP), which captures both burstiness and correlation in the interarrival times, and the service times and the vacation duration times are assumed to have a general phase-type distributions. The vacation policy is that of a working vacation policy where the server serves the customers at a lower rate during the vacation period as compared to the rate during the normal busy period. Various performance measures of this queueing system like the stationary queue length distribution, waiting time distribution and the distribution of regular busy period are derived. Through numerical experiments, certain insights are presented based on a comparison of the considered model with an equivalent model with independent arrivals, and the effect of the parameters on the performance measures of this model are analyzed.  相似文献   

11.
The arrival of a negative customer to a queueing system causes one positive customer to be removed if any is present. Continuous-time queues with negative and positive customers have been thoroughly investigated over the last two decades. On the other hand, a discrete-time Geo/Geo/1 queue with negative and positive customers appeared only recently in the literature. We extend this Geo/Geo/1 queue to a corresponding GI/Geo/1 queue. We present both the stationary queue length distribution and the sojourn time distribution.  相似文献   

12.
离散时间排队MAP/PH/3   总被引:1,自引:0,他引:1  
本文研究具有马尔可夫到达过程的离散时间排队MAP/PH/3,系统中有三个服务台,每个服务台对顾客的服务时间均服从位相型分布。运用矩阵几何解的理论,我们给出了系统平稳的充要条件和系统的稳态队长分布。同时我们也给出了到达顾客所见队长分布和平均等待时间。  相似文献   

13.
This paper considers a class of stationary batch-arrival, bulk-service queues with generalized vacations. The system consists of a single server and a waiting room of infinite capacity. Arrivals of customers follow a batch Markovian arrival process. The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in groups of fixed size B. For this class of queues, we show that the vector probability generating function of the stationary queue length distribution is factored into two terms, one of which is the vector probability generating function of the conditional queue length distribution given that the server is on vacation. The special case of batch Poisson arrivals is carefully examined, and a new stochastic decomposition formula is derived for the stationary queue length distribution.AMS subject classification: 60K25, 90B22, 60K37  相似文献   

14.
Ishizaki  Fumio  Takine  Tetsuya 《Queueing Systems》2000,34(1-4):67-100
An efficient yet accurate estimation of the tail distribution of the queue length has been considered as one of the most important issues in call admission and congestion controls in ATM networks. The arrival process in ATM networks is essentially a superposition of sources which are typically bursty and periodic either due to their origin or their periodic slot occupation after traffic shaping. In this paper, we consider a discrete-time queue where the arrival process is a superposition of general periodic Markov sources. The general periodic Markov source is rather general since it is assumed only to be irreducible, stationary and periodic. Note also that the source model can represent multiple time-scale correlations in arrivals. For this queue, we obtain upper and lower bounds for the asymptotic tail distribution of the queue length by bounding the asymptotic decay constant. The formulas can be applied to a queue having a huge number of states describing the arrival process. To show this, we consider an MPEG-like source which is a special case of general periodic Markov sources. The MPEG-like source has three time-scale correlations: peak rate, frame length and a group of pictures. We then apply our bound formulas to a queue with a superposition of MPEG-like sources, and provide some numerical examples to show the numerical feasibility of our bounds. Note that the number of states in a Markov chain describing the superposed arrival process is more than 1.4 × 1088. Even for such a queue, the numerical examples show that the order of the magnitude of the tail distribution can be readily obtained.  相似文献   

15.
In this article, we consider a single-server, finite-capacity queue with random bulk service rule where customers arrive according to a discrete-time Markovian arrival process (D-MAP). The model is denoted by D-MAP/G Y /1/M where server capacity (bulk size for service) is determined by a random variable Y at the starting point of services. A simple analysis of this model is given using the embedded Markov chain technique and the concept of the mean sojourn time of the phase of underlying Markov chain of D-MAP. A complete solution to the distribution of the number of customers in the D-MAP/G Y /1/M queue, some computational results, and performance measures such as the average number of customers in the queue and the loss probability are presented.  相似文献   

16.
In this paper, we are concerned with the analytical treatment of an GI/M/1 retrial queue with constant retrial rate. Constant retrial rate is typical for some real world systems where the intensity of individual retrials is inversely proportional to the number of customers in the orbit or only one customer from the orbit is allowed to make the retrials. In our model, a customer who finds the server busy joins the queue in the orbit in accordance with the FCFS (first-come-first-out) discipline and only the oldest customer in the queue is allowed to make the repeated attempts to reach the server. A distinguishing feature of the considered system is an arbitrary distribution of inter-arrival times, while the overwhelming majority of the papers is devoted to the retrial systems with the stationary Poisson arrival process. We carry out an extensive analytical analysis of the queue in steady state using the well-known matrix analytic technique. The ergodicity condition and simple expressions for the stationary distributions of the system states at pre-arrival, post-arrival and arbitrary times are derived. The important and difficult problem of finding the stationary distribution of the sojourn time is solved in terms of the Laplace–Stieltjes transform. Little’s formula is proved. Numerical illustrations are presented.  相似文献   

17.
Consider a model consisting of two phases: the GI/GI/1 queue and a buffer which is fed by a fluid arriving from a single-server queue. The fluid output from the GI/GI/1 queue is of the on/off type with on- and off-periods distributed as successive busy and idle periods in the GI/GI/1 queue. The fluid pours out of the buffer at a constant rate. The steady-state performance of this model is studied. We derive the Laplace-Stieltjes transform of the stationary distribution function of the buffer content in the case of the M/GI/1 queue in the first phase. It is shown that this distribution depends on the form of the service-time distribution. Therefore, the replacement of an M/GI/1 queue by an M/M/1 queue is not correct, in general. Continuity estimates are derived in the cast where the buffer is fed from the GI/GI/1 queue. Proceedings of the Seminar on Stability Problems for Stochastic Models, Moscow Russia, 1996, Part II.  相似文献   

18.
In [4], we treated the problem of passage through a discrete-time clock-regulated multistage queueing network by modeling the input time series {an} to each queue as a Markov chain. We showed how to transform probability transition information from the input of one queue to the input of the next in order to predict mean queue length at each stage. The Markov approximation is very good for p = E(an) ≦ ½, which is in fact the range of practical utility. Here we carry out a Markov time series input analysis to predict the stage to stage change in the probability distribution of queue length. The main reason for estimating the queue length distribution at each stage is to locate “hot spots”, loci where unrestricted queue length would exceed queue capacity, and a quite simple expression is obtained for this purpose.  相似文献   

19.
讨论M/T-SPH/1排队平稳队长分布的数值计算,以及平稳队长和逗留时间分布各阶矩的数值计算及渐近分析.其中T-SPH表示可数状态吸收生灭链吸收时间的分布.在分布PGF和LST的基础上,首先给出了计算平稳队长分布,平稳队长以及逗留时间分布各阶矩的数值结果的递推公式.其次还讨论了平稳队长及平稳逗留时间分布各阶矩的尾部渐近...  相似文献   

20.
Moment inequalities for the discrete-time bulk service queue   总被引:1,自引:0,他引:1  
For the discrete-time bulk service queueing model, the mean and variance of the steady-state queue length can be expressed in terms of moments of the arrival distribution and series of the zeros of a characteristic equation. In this paper we investigate the behaviour of these series. In particular, we derive bounds on the series, from which bounds on the mean and variance of the queue length follow. We pay considerable attention to the case in which the arrivals follow a Poisson distribution. For this case, additional properties of the series are proved leading to even sharper bounds. The Poisson case serves as a pilot study for a broader range of distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号