首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of new symmetrical FeII complexes, [FeLA(NCS)2] (1), and [FeLBx(NCS)2] (24), are reported (LA is the tetradentate Schiff base N,N′-bis(1-pyridin-2-ylethylidene)-2,2-dimethylpropane-1,3-diamine, and LBx stands for the family of tetradentate Schiff bases N,N′-bis[(2-R-1H-imidazol-4-yl)methylene]-2,2-dimethylpropane-1,3-diamine, with: R = H for LB1 in 2, R = Me for LB2 in 3, and R = Ph for LB3 in 4). Single-crystal X-ray structures have been determined for 1 (low-spin state at 293 K), 2 (high-spin (HS) state at 200 K), and 3 (HS state at 180 K). These complexes remain in the same spin-state over the whole temperature range [80–400 K]. The dissymmetrical tetradentate Schiff base ligands LCx, N-[(2-R2-1H-imidazol-4-yl)methylene]-N′-(1-pyridin-2-ylethylidene)-2,2-R1-propane-1,3-diamine (R1 = H, Me; R2 = H, Me, Ph), containing both pyridine and imidazole rings were obtained as their [FeLCx(NCS)2] complexes, 510, through reaction of the isolated aminal type ligands 2-methyl-2-pyridin-2-ylhexahydropyrimidine (R1 = H, 57) or 2,5,5-trimethyl-2-pyridin-2-ylhexahydropyrimidine (R1 = Me, 810) with imidazole-4-carboxaldehyde (R2 = H: 5, 8), 2-methylimidazole-4-carboxaldehyde (R2 = Me: 6, 9), and 2-phenyl-imidazole-4-carboxaldehyde (R2 = Ph: 7, 10) in the presence of iron(II) thiocyanate. Together with the single-crystal X-ray structures of 7 and 9, variable-temperature magnetic susceptibility and Mössbauer studies of 510 showed that it is possible to tune the spin crossover properties in the [FeLCx(NCS)2] series by changing the 2-imidazole and/or C2-propylene susbtituent of LCx.  相似文献   

2.
A new fluorescence reagent, N,N-bi[4(1-pyrene)-butyroyl]-lysine (1) was synthesized. The new fluorescence sensor showed high sensitivity (detection limit up to 20.7 μg L−1) and specific selectivity for Pb2+ over other metal ions examined in aqueous solutions. It could also be used to remove Pb2+ from aqueous solutions by filtering the insoluble 1–Pb2+ complex with sufficient reversibility.  相似文献   

3.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

4.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

5.
Complexes of three related 1-azapentadienyl ligands [N(SiMe2R1)C(But)(CH)3SiMe2R], abbreviated as L (R = But, R= Me), L′ (R = Me = R1), and L″ (R = But = R1), are described. The crystalline compounds Sn(L)2 (1), Sn(L′)2 (2), [Sn(L′)(μ-Cl)]2 (3) and [Sn(L″)(μ-Cl)]2 (4) were prepared from SnCl2 and 2 K(L), 2 K(L′), K(L′) and K(L″), respectively, in thf. Treatment of the appropriate lithium 1-azapentadienyl with Si(Cl)Me3 yielded the yellow crystalline Me3Si(L) (5) and the volatile liquid Me3Si(L′) (6) and Me3Si(L″) (7), each being an N,N,C-trisilyldieneamine. The red, crystalline Fe(L)2 (8) and Co(L′)2 (9) were obtained from thf solutions of FeCl2 with 2 Li(L)(tmeda) and CoCl2 with 2 K(L′), respectively. Each of 1-9 gave satisfactory C, H, N analyses; 6 and 7 (GC-MS) and 1, 2, 8 and 9 (MS) showed molecular cations and appropriate fragments (also 3 and 4). The 1H, 13C and 119Sn NMR (1-4) and IR spectra support the assignment of 1-4 as containing Sn-N(SiMe2R1)-C(But)(CH)3SiMe2R moieties and 5-7 as N(SiMe3)(SiMe2R1)C(But)(CH)3SiMe2R molecules; for 1-4 this is confirmed by their X-ray structures. The magnetic moments for 8 (5.56 μB) and 9 (2.75 μB) are remarkably close to the appropriate Fe and Co complex [M{η3-N(SiMe3)C(But)C(H)SiMe3}2]; hence it is proposed that 8 and 9 have similar metal-centred, centrosymmetric, distorted octahedral structures.  相似文献   

6.
The reactions of Cu(ClO4)2·6H2O with 6-(benzylamino)purine derivatives in a stoichiometric 1:2 metal-to-ligand ratio led to the formation of penta-coordinated dinuclear complexes of the formula [Cu2(μ-L18)4(ClO4)2](ClO4)2·nsolv, where L1 = 6-(2-fluorobenzylamino)purine (complex 1), L2 = 6-(3-fluorobenzylamino)purine (2), L3 = 6-(4-fluorobenzylamino)purine (3), L4 = 6-(2-chlorobenzylamino)purine (4), L5 = 6-(3-chlorobenzylamino)purine (5), L6 = 6-(4-chlorobenzylamino)purine (6), L7 = 6-(3-methoxybenzylamino)purine (7) and L8 = 6-(4-methoxybenzylamino)purine (8); n = 0–4 and solv = H2O, EtOH or MeOH. All the complexes have been fully characterized by elemental analysis, FTIR, UV–Vis and EPR spectroscopy, and by magnetic and conductivity measurements. Variable temperature (80–300 K) magnetic susceptibility data of 18 showed the presence of a strong antiferromagnetic exchange interaction between two Cu(II) (S = 1/2) atoms with J ranging from −150.0(1) to −160.3(2) cm−1. The compound 6·4EtOH·H2O was structurally characterized by single crystal X-ray analysis. The Cu?Cu separation has been found to be 2.9092(8) Å. The antiradical activity of the prepared compounds was tested by in vitro SOD-mimic assay with IC50 in the range 8.67–41.45 μM. The results of an in vivo antidiabetic activity assay were inconclusive and the glycaemia in pre-treated animals did not differ significantly from the positive control.  相似文献   

7.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

8.
The synthesis and characterization of new dinuclear MnIII and tetranuclear CuII complexes, [HL1Mn(DMSO)]2 (1) and [H2L2Cu2(MeO)2]2 (2), are reported (H4L1 = 2-hydroxy-N-[2-({2-[(2-hydroxybenzoyl)amino]ethyl}amino)ethyl]benzamide and H4L2 = 2-hydroxy-N-[3-({3-[(2-hydroxybenzoyl)amino]propyl}(methyl)amino)propyl]benzamide). Single crystal X-ray structures have been determined for 1 and 2. In 1 only one of the two amide functions of H4L1 is deprotonated in addition to the phenol ones, while in 2 all the amide functions of H4L2 are protonated and none of the potential nitrogen donors (amide and amine) is involved in the coordination to copper. HL1 and H2L2 do not play the role of compartmental ligands and do not wrap around one Mn and one Cu ion, respectively, but embrace two metal centers yielding, with the respective assistance of auxiliary DMSO and methoxo ligands, dinuclear manganese and tetranuclear copper complexes, respectively. 1 includes two well isolated MnIII ions (Mn?Mn′ = 7.33 Å) that do not interact magnetically. The intermolecular Mn?Mn″ distance along the 1D chains (10.17 Å) is also too large to allow extended magnetic interactions. The pairwise magnetic interactions between the copper(II) ions in the tetranuclear complex 2 are so large that the χMT product is already equal to zero at room temperature, implying that the antiferromagnetic interaction is around −1000 cm−1, as observed previously for di-μ-hydroxo–dicopper complexes.  相似文献   

9.
10.
A new tetraphenylethylene (TPE)-based sensor M1 bearing double 2-methylpyridyl-2-methylthiophenylamino units linked with triazole moieties was reported. Both UV–vis and fluorescence spectroscopic studies demonstrated that M1 was highly sensitive and selective toward Fe3+ over other metal ions in THF/H2O solution based on the aggregation-induced emission quenching mechanism. The lowest detection limit of M1 for Fe3+ is 0.7 μM. The detailed fluorescent titration study suggested that the binding stoichiometry of the M1–Fe3+ complex was 1:2, and the structure between M1 and the Fe3+ complex was confirmed by the 1H NMR titration.  相似文献   

11.
Ruthenium monoterpyridine complexes with the tridentate 2,6-bis(benzimidazol-2-yl)pyridine (LH2), [Ru(trpy)(LH2)]2+, [1]2+ and [Ru(trpy)(L2−)], 2 (trpy = 2,2′:6′,2″-terpyridine) have been synthesized. The complexes have been authenticated by elemental analyses, UV–Vis, FT-IR, 1H NMR spectra and their single crystal X-ray structures. Complexes [1]2+ and 2 exhibit strong MLCT band near 475 and 509 nm, respectively, and are found to be very much dependent on solution pH. The successive pH dependent dissociations of the N–H protons of benzimidazole moiety of LH2 in [1]2+ lead to the formation of 2. The proton induced inter-convertibility of [1]2+ and 2 has been monitored via UV–Vis spectroscopy and redox features. The two pKa values, 5.75 and 7.70, for complex [1]2+ have been determined spectroscopically.  相似文献   

12.
Calix[4]arenes with substituents at three of the four OH groups of the lower rim have been synthesized to investigate their properties as ionophores for Na+ and K+ metal ions. Crystal structures of these trisubstituted compounds revealed that the calixarene moiety has adopted a partial cone conformation, however the precise shape of the molecule, and intra- and intermolecular interactions, are significantly different due to variations of the substituents. Compound L2 encapsulated an acetonitrile molecule in the cavity of the calix moiety, held by C–H?π interactions. In the case of L3, the 2-(2-chloroethoxy)-ethanol substituent is involved in strong intramolecular C–H?π interactions with the centroid of the phenyl rings of the calix, bringing the 2-(2-chloroethoxy)-ethanol moiety inward the calix cone, which prevented the entry of any solvent molecule into the cavity. The complexation properties of L2L4 with Na+ and K+ ions have been investigated in chloroform–methanol mixture by 1H NMR and an attempt has been made to isolate these complexes in the solid state. Complexation studies reveal that only L3 forms a complex selectively with K+, involving 2-(2-chloroethoxy)-ethanol as a coordinating moiety. The association constant (1.4 × 105 M−1) of the complex has also been determined.  相似文献   

13.
Three fluorescent quinazolines thiophen-2-yl-5,6-dihydrobenzo-[4,5]imidazo[1,2-c]quinazoline (1), pyridin-3-yl-5,6-dihydrobenzo-[4,5]imidazo-[1,2-c]quinazoline (2) and phenyl-5,5′,6,6′-dihydrobenzo-[4,4′,5,5′]imidazo-[1.1′,2-c,2′-c]quinazoline (3) have been synthesized. Structures of 1 and 3 have been authenticated crystallographically. Quinazolines 1-3 exhibit highly selective ‘on-off’ switching for Hg2+ ions. The fluorescence intensity displayed a linear relationship with respect to Hg2+ concentration (0.1-1.0 μM; R2 = 0.99) with detection limit of 2.0 × 10−7 M.  相似文献   

14.
Ruthenium complexes with bipyridine-analogous quaternized (N,C) bidentate ligands [RuL(bpy)2](PF6)2 (bpy = 2,2′-bipyridine, (1), L = L1 = N′-methyl-2,4′-bipyridinium; (2), L = L2 = N′-methyl-2,3′-bipyridinium) were synthesized and characterized. The structure of complex 2 was determined by the X-ray structure analysis. The 13C{1H} NMR spectroscopic and cyclic voltammetric studies indicate that the coordination modes of these ligands are quite different, that is, the C-coordinated rings of (N,C)-ligands in 1 and 2 are linked to ruthenium(II) with a pyridinium manner and a pyridinylidene one, respectively. The ligand-localized redox potentials of 1 and 2 also revealed the substantial difference in the electron donating ability of both ligands.  相似文献   

15.
16.
17.
Four cyclometalated Pt(II) complexes, i.e., [(L2)PtCl] (1b), [(L3)PtCl] (1c), [(L2)PtCCC6H5] (2b) and [(L3)PtCCC6H5] (2c) (HL2 = 4-[p-(N-butyl-N-phenyl)anilino]-6-phenyl-2,2′-bipyridine and HL3 = 4-[p-(N,N′-dibutyl-N′-phenyl)phenylene-diamino]-phenyl-6-phenyl-2,2′-bipyridine), have been synthesized and verified by 1H NMR, 13C NMR and X-ray crystallography. Unlike previously reported complexes [(L1)PtCl] (1a) and [(L1)PtCCC6H5] (2a) (HL1 = 4,6-diphenyl-2,2′-bipyridine), intense and continuous absorption bands in the region of 300-500 nm with strong metal-to-ligand charge transfer (1MLCT) (dπ(Pt) → π(L)) transitions (ε ∼ 2 × 104 dm3 mol−1 cm−1) at 449-467 nm were observed in the UV-Vis absorption spectra of complexes 1b, 1c, 2b and 2c. Meanwhile, with the introduction of electron-donating arylamino groups in the ligands of 1a and 2a, complexes 1b and 2b display stronger phosphorescence in CH2Cl2 solutions at room temperature with bathochromically shifted emission maxima at 595 and 600 nm, relatively higher quantum yields of 0.11 and 0.26, and much longer lifetimes of 8.4 and 4.5 μs, respectively. An electrochromic film of 1b-based polymer was obtained on Pt or ITO electrode surface, which suggests an efficient oxidative polymerization behavior. An orange multilayer organic light-emitting diode with 1b as phosphorescent dopant was fabricated, achieving a maximum current efficiency of 11.3 cd A−1 and a maximum external efficiency of 5.7%. The luminescent properties of complexes 1c and 2c are dependent on pH value and solvent polarity, which is attributed to the protonation of arylamino units in the C^N^N cyclometalating ligands.  相似文献   

18.
19.
Schiff base N,N′-bis(salicylidene)-p-phenylenediamine (LH2) complexed with Pt(en)Cl2 and Pd(en)Cl2 provided [Pt(en)L]2 · 4PF6 (1) and Pd(Salen) (2) (Salen = N,N′-bis(salicylidene)-ethylenediamine), respectively, which were characterized by their elemental analysis, spectroscopic data and X-ray data. A solid complex obtained by the reaction of hexafluorobenzene (hfb) with the representative complex 1 has been isolated and characterized as 3 (1 · hfb) using UV–Vis, NMR (1H, 13C and 19F) data. A solid complex of hfb with a reported Zn-cyclophane 4 has also been prepared and characterized 5 (4 · hfb) for comparison with complex 3. The association of hfb with 1 and 4 has also been monitored using UV–Vis and luminescence data.  相似文献   

20.
New Ru(II) complexes with dicationic ligand, [Ru(phen)2L1]4+(1) and [Ru(phen)2L2]4+(2) (phen = 1,10-phenanthroline; L: L1 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation; L2 = 5,5′-di(1-(tributylammonio)methyl)-2,2′-dipyridyl cation) have been synthesized and structurally characterized. The interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated. The intrinsic binding constants (Kb: 1, 7.73 × 104 M−1; 2, 2.50 × 104 M−1) determined by absorption spectral titrations of these complexes with CT-DNA indicate the DNA-binding affinity of 1 is stronger than that of 2. Both complexes can display luminescence either alone in aqueous solution or in the presence of DNA. Equilibrium dialysis experiments monitored by CD spectroscopy reveal the preferential binding of the Δ-enantiomer to the right-handed CT-DNA. DNA-viscosity studies suggest that the binding modes are different, 1 may partially intercalate between DNA base-pairs while 2 most likely interact with DNA in an electrostatic binding mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号