首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

2.
Li S  Zheng Y  Qin GW  Ren Y  Pei W  Zuo L 《Talanta》2011,85(3):1260-1264
In this paper, an enzyme-free amperometric electrochemical sensor was fabricated by casting Nafion-impregnated Cu2O particles onto a glassy carbon electrode. A dual dependence of peak current on sweeping rate, which can be attributed for the accumulation of reaction products, was observed on the sensor. Electrochemical analysis of the particulate Cu2O for detecting H2O2 and glucose is described, showing remarkable sensitivity in both cases. The estimated detection limits and sensitivities for H2O2 (0.0039 μM, 52.3 mA mM−1 cm−2) and glucose (47.2 μM, 0.19 mA mM−1 cm−2) suggest that the response for H2O2 detection was much higher than for glucose detection. Electron microscopy observation suggested that the hierarchical structures of Cu2O resulting from self-assembly of nanocrystals are responsible for the specific electrochemical properties.  相似文献   

3.
Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires–graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2–ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1–45.4 mM, with a detection limit of 10 μM (S/N = 3) and detection sensitivity of 59.0 μA cm−2 mM−1. These outstanding sensing performances enable the practical application of MnO2–ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring.  相似文献   

4.
A nitrite sensor based on Dawson vanodotungstophosphates α2-K7P2VW17O62·18H2O (P2W17V) and carbon nanotubes (CNTs) was prepared by electrostatic layer-by-layer self-assembly technique. The sensor {PEI/PSS/[PDDA/P2W17V-CNTs]n} was characterized by UV–vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS). The electron transfer and sensing ability of this sensor were explored using cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) technology. The results show that the incorporation of CNTs and P2W17V into the composite film endowed the modified electrode with fast transfer rate and high electrocatalytic activity towards oxidation of nitrite. This nitrite sensor with 10 bilayers has a broad linear range of 5 × 10−8 to 2.13 × 10−3 M, a low detection limit of 0.0367 μM (S N−1 = 3), a high sensitivity of 0.35 mA mM−1 NO2, an excellent anti-interference property in the presence of other potential interfering species and a good stable. It was successfully employed for determination of nitrite in real towards.  相似文献   

5.
The pre-grafted screen-printed gold electrode modified with phenyl-amino monolayer was investigated for covalent immobilization of phenyl-amine functionalized single-walled carbon nanotubes (PA-SWCNT) and metal tetra-amino phthalocyanine (MTAPc) using Schiff-base reactions with benzene-1,4-dicarbaldehyde (BDCA) as cross-linker. The PA-SWCNT and MTAPc modified electrodes were applied as hybrids for electrochemical sensing of H2O2. The step-by-step fabrication of the electrode was followed using electrochemistry, impedance spectroscopy, scanning electron microscopy and Raman spectroscopy and all these techniques confirmed the fabrication and the immobilization of PA-SWCNT, MnTAPc and CoTAPc onto gold surfaces. The apparent electron transfer constant (kapp) showed that the carbon nanotubes and metallo-phthalocyanines hybrids possess good electron transfer properties compared to the bare, pre-grafted and the MTAPc modified gold electrode surfaces without PA-SWCNT. The electrochemical sensing of hydrogen peroxide was successful with PA-SWCNT-MTAPc hybrid systems showing higher electrocatalytic currents compared to the other electrodes. The analytical parameters obtained using chronoamperometry gave good linearity at H2O2 concentrations ranging from 1.0 to 30.0 μmol L−1. The values for the limit of detection (LoD) were found to be of the orders of 10−7 M using the 3δ for all the electrodes. The PA-SWCNT-MTAPc modified SPAuEs were much more sensitive compared to PA-MTAPc modified SPAuEs.  相似文献   

6.
A highly sensitive NOx sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry. It exhibited the characteristic CuNP reversible redox peaks at −0.15 V and −0.3 V vs. Ag/AgCl respectively. The electrocatalytic activity of the CuNP-SWCNT-PPy-Pt electrode towards NOx is four-fold than the CuNP-PPy-Pt electrode. These results clearly revealed that the SWCNT-PPy nanocomposite facilitated the electron transfer from CuNP to Pt electrode and provided an electrochemical approach for the determination of NOx. A linear dependence (r2 = 0.9946) on the NOx concentrations ranging from 0.7 to 2000 μM, with a sensitivity of 0.22 ± 0.002 μA μM−1 cm−2 and detection limit of 0.7 μM was observed for the CuNP-SWCNT-PPy-Pt electrode. In addition, the sensor exhibited good reproducibility and retained stability over a period of one month.  相似文献   

7.
In this report, a highly sensitive amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes (MnO2/VACNTs) for determination of hydrogen peroxide (H2O2) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO2/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H2O2 at the MnO2/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO2/VACNTs nanocomposite electrode exhibits a linear dependence (R = 0.998) on the concentration of H2O2 from 1.2 × 10−6 M to 1.8 × 10−3 M, a high sensitivity of 1.08 × 106 μA M−1 cm−2 and a detection limit of 8.0 × 10−7 M (signal/noise = 3). Meanwhile, the MnO2/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and d-(+)-glucose, etc. In addition, the sensor based on the MnO2/VACNTs nanocomposite electrode was applied for the determination of trace of H2O2 in milk with high accuracy, demonstrating its potential for practical application.  相似文献   

8.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

9.
Hua MY  Chen HC  Tsai RY  Lai CS 《Talanta》2011,85(1):631-637
The imine of polybenzimidazole (PBI) is chemically oxidized by hydrogen peroxide (H2O2) in the presence of acetic acid (AcOH). Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopies (XPS) showed that when the AcOH concentration remained constant, the degree of oxidation increased with increasing H2O2 levels. Moreover, the imine also exhibited electrochemical redox behavior. Based on these properties, a PBI-modified Au (PBI/Au) electrode was developed as an enzyme-free H2O2 sensor. At an applied potential of −0.5 V vs. Ag/AgCl, the current response of the PBI/Au electrode was linear with H2O2 concentration over a range from 0.075 to 1.5 mM, with a sensitivity of 55.0 μA mM−1 cm−2. The probe had excellent stability, with <5% variation from its initial response current after storage at 50 °C for 10 days. Potentially interfering species such as ascorbic or uric acid had no effect on sensitivity. Sensitivity improved dramatically when multiwalled carbon nanotubes (MWCNT) were incorporated in the probe. Under optimal conditions, the detection of H2O2 using a MWCNT-PBI/Au electrode was linear from 1.56 μM to 2.5 mM, with a sensitivity of 928.6 μA mM−1 cm−2. Analysis of H2O2 concentrations in urine samples using a MWCNT-PBI/Au electrode produced accurate real-time results comparable to those of traditional HPLC methods.  相似文献   

10.
Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 104 M−1 s−1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM−1), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.  相似文献   

11.
Wei Zhao  Xia Qin  Zixia Zhao  Lili Chen  Yuxin Fang 《Talanta》2009,80(2):1029-943
A novel strategy to fabricate hydrogen peroxide (H2O2) sensor was developed based on multi-wall carbon nanotube/silver nanoparticle nanohybrids (MWCNT/Ag nanohybrids) modified gold electrode. The process to synthesize MWCNT/Ag nanohybrids was facile and efficient. In the presence of carboxyl groups functionalized multi-wall carbon nanotubes (MWCNTs), silver nanoparticles (Ag NPs) were in situ generated from AgNO3 aqueous solution and readily attached to the MWCNTs convex surfaces at room temperature, without any additional reducing reagent or irradiation treatment. The formation of MWCNT/Ag nanohybrids product was observed by transmission electron microscope (TEM), and the electrochemical properties of MWCNT/Ag nanohybrids modified gold electrode were characterized by electrochemical measurements. The results showed that this sensor had a favorable catalytic ability for the reduction of H2O2. The resulted sensor could detect H2O2 in a linear range of 0.05-17 mM with a detection limit of 5 × 10−7 M at a signal-to-noise ratio of 3. The sensitivity was calculated as 1.42 μA/mM at a potential of −0.2 V. Additionally, it exhibited good reproducibility, long-term stability and negligible interference of ascorbic acid (AA), uric acid (UA), and acetaminophen (AP).  相似文献   

12.
A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3–20,000 μM, to nitrite (NO2) for 1.3 μM–1660 μM and 2262 μM–1,33,000 μM, to glucose for 2.0–1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2, 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s−1 and 2.45 s−1, respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface.  相似文献   

13.
The electrocatalytic activity of a CuO flower-like nanostructured electrode was investigated in terms of its application to enzyme-less amperometric H2O2 sensors. The CuO nanoflowers film was directly formed by chemical oxidation of copper foil under hydrothermal condition and then used as active electrode material of non-enzymatic electrochemical sensors for H2O2 detection under alkaline conditions. The sensitivity of the sensor with CuO nanoflowers electrode was 88.4 μA/mM cm2 with a linear response in the range from 4.25 × 10−5 to 4 × 10−2 M and a detection limit of 0.167 μM (S/N = 3). Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport property of CuO nanoflowers electrode have enabled stable and highly sensitive performance for the non-enzymatic H2O2 sensor.  相似文献   

14.
A nitrogen-doped graphene/carbon nanotubes (NGR–NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR–NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR–NCNTs (ENGR–NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR–NCNTs/GCE exhibited a wide linearity of 0.06–50 μM for CAF and 0.01–10 μM for VAN with detection limits of 0.02 μM and 3.3 × 10−3 μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR–NCNTs nanocomposite has promising potential in electrocatalytic biosensor application.  相似文献   

15.
Hui Yao  Nan Li  Jun-Jie Zhu 《Talanta》2007,71(2):550-554
Direct electrochemical and electrocatalytic behavior of hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containing gelatine (Gel) films was investigated. The characteristics of Hb/Gel film modified GC electrode were performed by using SEM microscopy, UV-vis spectroscopy and electrochemical methods. The immobilized Hb showed a couple of quasi-reversible redox peak with a formal potential of −0.38 V (versus SCE) in 0.1 M pH 7.0 PBS. The formal potential changed linearly from pH 4.03 to 8.41 with a slope value of −52.0 mV pH−1, which suggested that a proton transfer was accompanied with each electron transfer (ET) in the electrochemical reaction. The Hb/gelatine/GCE displayed a rapid amperometric response to the reduction of H2O2 and nitrite.  相似文献   

16.
In this communication, the first nonelectrocatalysis-type hydrogen peroxide electrochemical sensor is reported. The electroactive iron(III) diethylenetriaminepentaacetic acid (DTPA-FeIII) complex is immobilized on the cysteamine (cys) modified nanoporous gold (NPG) films by covalent method. The immobilized DTPA-FeIII complex quickly communicates an electron with the electrode. Upon addition of hydrogen peroxide, however, hydrogen peroxide inhibits the direct electron transfer of the DTPA-FeIII complex due to the generation of nonelectroactive DTPA-FeIII–H2O2 complex. Based on quenching mechanism, the first hydrogen peroxide electrochemical sensor based on a nonelectrocatalytic mechanism is developed. The novel hydrogen peroxide electrochemical sensor has the ultralow detection limit (1.0 × 10–14 M) and wide linear range (1.0 × 10–13 to 1.0 × 10–8 M) with excellent reproducibility and stability.  相似文献   

17.
An effective electrochemical sensor for the rapid and simultaneous determination of tramadol and acetaminophen based on carbon paste electrode (CPE) modified with NiFe2O4/graphene nanoparticles was developed. The structures of the synthesized NiFe2O4/graphene nanocomposite and the electrode composition were confirmed by X-ray diffraction (XRD) spectrometry, Fourier transform infrared (FT-IR) spectrometry and scanning electron microscopy (SEM). The peak currents of square wave voltammetry of tramadol and acetaminophen increased linearly with their concentration in the range of 0.01–9 μmol L−1. The detection limit for their determination was found to be 0.0036 and 0.0030 μmol L−1, respectively. The results show that the combination of graphene and NiFe2O4 nanoparticles causes a dramatic enhancement in the sensitivity of the sensor. The fabricated sensor exhibited high sensitivity and good stability, and would be valuable for the clinical assay of tramadol and acetaminophen.  相似文献   

18.
A novel ceria (CeO2)–ordered mesoporous carbon (OMC) modified electrode for the sensitive amperometric determination of hydrazine was reported. CeO2–OMC composites were synthesized via a hydrothermal method at a relatively low temperature (180 °C) and characterized by scanning electron microscopy (SEM), transmission electron microcopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The CeO2–OMC modified glassy carbon electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and indicated good electrocatalytic effect to the oxidation of hydrazine. Under the optimized conditions, the present sensor could be used to measure hydrazine in wide linear range from 40 nM to 192 μM (R2 = 0.999) with a low detection limit of 12 nM (S/N = 3). Additionally, the sensor has been successfully applied to detect hydrazine in real water samples and the recoveries were between 98.2% and 105.6%. Eventually, the sensor exhibited an excellent stability and reproducibility as a promising method for determination of hydrazine.  相似文献   

19.
Gui-Fen Jie 《Talanta》2007,71(4):1476-1480
Electrogenerated chemiluminescence (ECL) of CdS nanotubes in aqueous solution and its sensing application were studied by entrapping the CdS nanotubes in carbon paste electrode. Two ECL peaks were observed at −0.9 V (ECL-1) and −1.2 V (ECL-2), respectively, when the potential was cycled between 0 and −1.6 V. The electrochemically reduced nanocrystal species of CdS nanotubes could collide with the oxidized species in an annihilation process to produce the peak of ECL-1. The electron-transfer reaction between the reduced CdS nanocrystal species and oxidant coreactants such as S2O82−, H2O2, and reduced dissolved oxygen led to the appearance of the ECL-2 peak. Based on the enhancing effect of H2O2 on ECL-2 intensity, a novel CdS ECL sensor was developed for H2O2 detection. The sensor exhibited a detection limit of 0.1 μM and a linear range from 0.5 μM to 0.01 mM. The relative standard deviations of five replicate determinations of 5 μM H2O2 was 2.6%. In addition, the ECL spectrum in aqueous solution also exhibited two peaks at 500 and 640 nm, respectively.  相似文献   

20.
An amperometric sensor based on Ni1−xAlx(OH)2NO3x·nH2O layered double hydroxide (LDH) has been developed for the electrochemical analysis in one step of two herbicides: glyphosate (N-(phosphonomethyl)glycine, Glyp) and glufosinate ((DL-homoalanine-4-yl)-methylphosphinic acid, Gluf). NiAl-LDH was prepared by coprecipitation or by electrodeposition at the Pt electrode surface. Inorganic films were fully characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. Adsorption isotherms of Glyp onto this inorganic lamellar material have been established. Electrocatalytic oxidation of Glyp and Gluf is possible at the Ni3+ centres of the structure. The electrochemical responses of the NiAl-LDH modified electrode were obtained by cyclic voltammetry and chronoamperometry at 0.49 V/SCE as a function of herbicide concentration in 0.1 M NaOH solution. The electrocatalytic response showed a linear dependence on the Glyp concentration ranging between 0.01 and 0.9 mM with a detection limit of 1 μM and sensitivity 287 mA/M cm2. The sensitivity found for Gluf was lower (178 mA/M cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号