首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high-pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared with that conventionally used. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell, followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, providing an effective drift region of 98 cm. The resolution of the instrument was evaluated at pressures ranging from 4 to 12 torr and ion mobility drift voltages of 16 V/cm (4 torr) to 43 V/cm (12 torr). An increase in resolution from 55 to 80 was observed from 4 to 12 torr nitrogen drift gas with no significant loss in sensitivity. The choice of drift gas was also shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.  相似文献   

2.
Developments in ion mobility spectrometry–mass spectrometry   总被引:4,自引:0,他引:4  
Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs.  相似文献   

3.
Implementation concepts as well as the fundamental aspects concerning the analytical capability of diode laser spectrometry with respect to narrow and broad band absorption are discussed. The applicability is illustrated by means of the element-selective analysis of flames or plasmas and the molecular analysis of liquids or turbid media. While in narrow band absorption one diode laser and different modulation techniques can be applied to obtain very low detection limits, two diode lasers and a double-beam scheme should be used when the absorption bands are very broad. The two-laser, double-beam method is demonstrated by means of absorption measurements in a turbid medium and by concentration analyses of liquid samples applying the surface plasmon resonances technique.  相似文献   

4.
Clinical and forensic toxicology laboratories are inundated with thousands of samples requiring lengthy chromatographic separations prior to mass spectrometry. Here, we employ differential mobility spectrometry (DMS) interfaced to nano-electrospray ionization-mass spectrometry to provide a rapid ion filtration technique for the separation of ions in gas phase media prior to mass spectral analysis on a DMS-integrated AB SCIEX API 3000 triple-quadrupole mass spectrometer. DMS is efficient at the rapid separation of ions under ambient conditions and provides many advantages when used as an ion filtration technique in tandem with mass spectrometry (MS) and MS/MS. Our studies evaluated DMS-MS/MS as a rapid, quantitative platform for the analysis of drug metabolites isolated from urine samples. In targeted applications, five metabolites of common drugs of abuse were effectively and rapidly separated using isopropanol and ethyl acetate as transport gas modifiers, eliminating the gas chromatography or liquid chromatography-based separations commonly employed in clinical and forensic toxicology laboratories. Calibration curves were prepared for the selected drug metabolites utilizing deuterated internal standards for quantitative purposes. The feasibility of separating and quantitating drug metabolites in a rapid fashion was evaluated by compensation voltage stepping followed by multiple reaction monitoring (MRM) detection. Rapid profiling of clinical and forensic toxicology samples could help to address an urgent need within the scientific community by developing high-throughput analytical methodologies, which could reduce significant case backlogs present within these laboratories.  相似文献   

5.
6.
Polyatomic ions, often considered as causing interference in ICP-MS, SSMS and GDMS, are useful in thermal ionisation mass spectrometry (TIMS) for determining the atomic ratios of the elements, particularly for light elements. The objective of this paper is to provide a detailed discussion on the handling of the isotopic measurement data in TIMS using polyatomic ions, a useful technique for light elements, to reduce isotope fractionation effects. Taking as an example the Li2BO2+ ion for the determination of the 6Li/7Li or 10B/11B ratio of the unknown sample, a detailed theoretical analysis is presented for optimum selection of the pair of polyatomic ions to be used to determine the isotopic ratio of the element. The theory is supported by experimental data from the literature in three different examples: (i) the isotopic analysis of natural Li samples using the SRM-951-B isotopic standard; (ii) the isotopic analysis of an enriched 6Li sample using SRM-951-B; (iii) the isotopic analysis of an enriched 10B sample using natural Li (Svec standard). It is shown that the four polyatomic peaks observed in the m/z range of 54–57 are of practical importance. A qualitative idea can be obtained about the isotopic composition of Li and B in the sample (natural or enriched) based on the intensity distribution of these four peaks in the mass spectrum. When calculating accurate atomic ratios from the observed intensities of the polyatomic peaks, a simple “rule of thumb” should be kept in mind: the polyatomic ratio that is closer to the expected atomic ratio provides an accurate value of the atomic ratio of the element in the unknown sample. Even between the two polyatomic ion ratios, better accuracy is possible in cases which do not magnify the error during calculation and show less isotopic fractionation in the ion source. It has been stressed that the two peaks of highest intensity in the polyatomic ion are not necessarily the best for arriving at atomic ratios during the analyses of unknown samples, for depleted as well as enriched 6Li and 10B samples.  相似文献   

7.
Complexation of alendronate sodium (AlnNa) with β-cyclodextrin (β-CD) was studied by means of ESI-mass spectrometry. The experimental results show that stable 1:1 inclusion complexes between selected bisphosphonates and β-CD were formed. In addition, complexes with different stoichiometry were observed. DFT/B3LYP calculations were performed to elucidate the different inclusion behavior between alendronate and β-CD. Molecular modeling showed that the inclusion complex of Aln-β-CD where the two phosphonate groups bound to the central carbon atom of bisphosphonate were inserted into the cavity of β-CD from its “top” side was thermodynamically more favorable than when they were inserted from its “bottom” side; the complexation energy was ?74.05 versus ?60.85 kcal/mol. The calculations indicated that the formation of conventional hydrogen bonds was the main factor for non-covalent β-CD:Aln complex formation and stabilization in the gas phase.  相似文献   

8.
In this study, a generic extraction protocol and full-scan high-resolution Orbitrap-mass spectrometry (MS) detection method were developed, enabling the metabolomic screening for carotenoids in tomato fruit tissue. To this end, the carotenoids lutein, zeaxanthin, α-carotene, β-carotene, and lycopene (representing both xanthofylls and carotenes) were considered. The extraction procedure was optimized by means of a D-optimal design and consisted of a liquid–liquid extraction with methanol/tert-butyl methyl ether (1:1, v/v). The considered compounds were detected by a single-stage ExactiveTM mass spectrometer, operating at a mass resolution of 100,000 full width at half maximum. The validation study demonstrated excellent performance in terms of linearity (R 2?>?0.99), repeatability (CV?≤?10.6 %), within-laboratory reproducibility (CV?≤?12.2 %), and mean corrected recovery (ranging from 85 to 106 %). Additionally, a comparative evaluation towards well-established detection techniques, i.e., tandem mass spectrometry (MS/MS) and ultraviolet-visible spectroscopy (UV–VIS) photodiode array, indicated superior performance of high-resolution Orbitrap-MS with regard to specificity/selectivity and sensitivity (with limits of detection ranging from 1.0 to 3.8 pg μL?1). As a result, it may be concluded that high-resolution Orbitrap-MS is a suited alternative for UV–VIS or MS/MS in analyzing carotenoids and may offer significant value in carotenoid research because of the metabolomic screening possibilities.
Figure
Development and validation of a full-scan high-resolution Orbitrap-MS method for the analysis of carotenoids in tomato fruit tissue. Validation enclosed comparison with MS/MS and UV-VIS PDA  相似文献   

9.
Many diseases such as arthritis or atherosclerosis are accompanied by inflammatory processes. Inflammation is characterized by the infiltration of cells such as neutrophilic granulocytes and (a) the release of phospholipases [particularly phospholipase A2 (PLA2)] and (b) the generation of reactive oxygen as well as nitrogen species (ROS and RNS). While PLA2 leads to defined lyso products (lacking one acyl residue), lipid oxidation is characterized by much more complex product patterns, including lipid peroxides, aldehydes (by double bond cleavage), and many others. Nevertheless, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by the oxidation of lipids and/or free fatty acids. Therefore, lipid oxidation products as well as lysolipids are increasingly assumed to represent important disease (bio)markers. Consequently, there is also increasing interest in methods to characterize these products qualitatively and quantitatively. Mass spectrometry (MS) seems to be the method of choice to study (phospho)lipids changed under inflammatory conditions: nowadays, soft ionization MS methods are regularly used to study oxidative lipid modifications because of their high sensitivities and the tremendous mass resolutions that are achievable by using modern mass spectrometers. However, experimental care is required to be able to detect all relevant products. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are continuously increasing. This review aims to summarize the so far available data on MS analyses of oxidized lipids as well as lysolipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids and lysolipids under in vivo conditions. It is the aim of this review to provide a critical survey of the advantages and drawbacks of the different MS methods, with the focus on MALDI and ESI.
Figure
Scheme of mass spectrometric analysis to study oxidation and enzyme-modified phospholipids changed under inflammatory conditions  相似文献   

10.
This paper describes the development of an optimized method based on solid-phase extraction (SPE) followed by liquid chromatography–electrospray ionization tandem mass spectrometry (LC–MS/MS) for the simultaneous analysis of ten antibiotic compounds including tetracyclines, sulfonamides, macrolides and quinolones. LC–MS/MS sensitivity has been optimized by alterations to both LC and MS operations. Of the two high resolution columns tested, Waters Symmetry C18 endcapped and Agilent Zorbax Bonus-RP, the latter was found to show better performance in producing sharp peaks and clear separation for most of the target compounds. Optimization of the MS fragmentation collision and cone energy enhanced the peak areas of the target analytes. The recovery of the target compounds from water samples was most efficient on Waters Oasis HLB SPE cartridge, while methanol was shown to be the most suitable solvent for desorbing the compounds from SPE. In addition, acidification of samples prior to SPE was shown to enhance the recovery of the compounds. To ensure a satisfactory recovery, the flow rate through SPE should be maintained at ≤10 mL min−1. The method was successfully applied to the analysis of antibiotics from environmental water samples, with concentrations being <LOD in tap water, between <LOD to 28 ng L−1 in river water and between <LOD to 230 ng L−1 in sewage effluent.  相似文献   

11.
This study used reversed-phase liquid chromatography–tandem mass spectrometry and supercritical fluid chromatography–tandem mass spectrometry for determination of the stereoisomers of chlorfenvinphos and dimethylvinphos in tobacco. Tobacco samples were extracted and purified with a modified quick, easy, cheap, effective, rugged, and safe technique using spherical carbon. The performance of both methodologies was comprehensively compared in terms of methods validation parameters (separation efficiency, linearity, selectivity, recovery, repeatability, sensitivity, matrix effect, etc.). Under optimized conditions, the calibration curves of the stereoisomers of chlorfenvinphos and dimethylvinphos in the range of 10–500 ng/mL showed excellent linearity with R2 ≥ 0.997 in both methods. The adequate recoveries of analytes from three different spiked tobaccos were obtained using reversed-phase liquid chromatography–tandem mass spectrometry (86.1–95.7%) as well as supercritical fluid chromatography–tandem mass spectrometry (86.5–94.0%). The relative standard deviations for spiked samples were all below 7.0%. Compared with supercritical fluid chromatography–tandem mass spectrometry, lower matrix effects and LODs can be obtained in reversed-phase liquid chromatography–tandem mass spectrometry.  相似文献   

12.
In this study, UV–visible spectrophotometry (UV–Vis) and high-performance liquid chromatography (HPLC) were used for simultaneous analysis of chelating agents diethylenetriamine pentaacetic acid (DTPA), ethylenediamine tetraacetic acid (EDTA), and nitrilotriacetic acid (NTA), as their metal chelates in dishwashing detergents, natural waters, and pulp mill water. The total amounts of the chelating agents in dishwashing detergents were verified by potentiometric titration with Fe(III) solution. Nickel(II) chelates were determined by UV–Vis and iron(III)chelates by HPLC and titration. Recoveries of DTPA, EDTA, and NTA from a standard mixture of analytes by UV–Vis were 107±7, 101±12 and 94±13%, respectively, and the recovery of the total amount of complexing agents was 99±4%. The limits of detection for DTPA, EDTA, and NTA were 667, 324, and 739 mol L–1, respectively. In HPLC measurements the optimized mobile phase contained 0.03 mol L–1 sodium acetate, 0.002 mol L–1 tetrabutylammonium bromide, and 5% methanol at pH 3.15 and the detection was by UV–Vis detection at 254 nm. All three complexing agents could be separated from each other in a simultaneous analysis in less than 5 min. The limits of detection were 0.34, 0.27, and 0.62 mol L–1 for DTPA, EDTA, and NTA, respectively. The total amounts of the analytes measured in the dishwashing detergents by the three techniques were found to be highly comparable (ANOVA: F=0.04, P=0.96). R2 values were 0.99 for EDTA, 0.99 for NTA, and 0.99 for all the results when UV–Vis and HPLC determinations were compared using regression lines. The UV–Vis and HPLC methods were proved to be viable also for analyses of natural and pulp mill waters. The absence of matrix interferences was verified by the standard addition technique.  相似文献   

13.
Five topological units: low- and high-temperature amorphous blocks and three crystalline modifications that act as branching points in the networks of both amorphous blocks, have been detected for the first time in the pseudo-network structure of the unirradiated fluoroelastomer SKF-32 by means of thermomechanical spectrometry (TMS). When the rubber is γ-irradiated to a dose of 10 kGy, the structures of the intermediate and high-melting crystalline fractions degrade and their amorphized chains along with interjunction chains of both amorphous blocks assimilate into one amorphous block, and the latter is the block of the chemically crosslinked rubber already with a topologically diblock semicrystalline structure. A radiothermoluminescence (RTL) curve of the irradiated rubber shows four relaxation transitions (emissions peaks), with only the transition at–25°C almost coinciding with the glass transition temperature observed in thermomechanical analysis curve of the crosslinked rubber.  相似文献   

14.
The ionization and transmission efficiencies of an electrospray ionization (ESI) interface were investigated to advance the understanding of how these factors affect mass spectrometry (MS) sensitivity. In addition, the effects of the ES emitter distance to the inlet, solution flow rate, and inlet temperature were characterized. Quantitative measurements of ES current loss throughout the ESI interface were accomplished by electrically isolating the front surface of the interface from the inner wall of the heated inlet capillary, enabling losses on the two surfaces to be distinguished. In addition, the ES current lost to the front surface of the ESI interface was spatially profiled with a linear array of 340-microm-diameter electrodes placed adjacent to the inlet capillary entrance. Current transmitted as gas-phase ions was differentiated from charged droplets and solvent clusters by measuring sensitivity with a single quadrupole mass spectrometer. The study revealed a large sampling efficiency into the inlet capillary (>90% at an emitter distance of 1 mm), a global rather than a local gas dynamic effect on the shape of the ES plume resulting from the gas flow conductance limit of the inlet capillary, a large (>80%) loss of analyte ions after transmission through the inlet arising from incomplete desolvation at a solution flow rate of 1.0 microL/min, and a decrease in analyte ions peak intensity at lower temperatures, despite a large increase in ES current transmission efficiency.  相似文献   

15.
Over the last two decades, coupled capillary electrophoresis (CE)–mass spectrometry (MS) has developed into a generally accepted technique with a wide applicability. A growing number of CE-MS applications make use of capillaries where the internal wall is modified with surface coating agents. In CE-MS, capillary coatings are used to prevent analyte adsorption and to provide appropriate conditions for CE-MS interfacing. This paper gives an overview of the various capillary coating strategies used in CE-MS. The main attention is devoted to the way coatings can contribute to a proper CE-MS operation. The foremost capillary coating methods are discussed with emphasis on their compatibility with MS detection. The role of capillary coatings in the control of the electroosmotic flow and the consequences for CE-MS coupling are treated. Subsequently, an overview of reported applications of CE-MS employing different coating principles is presented. Selected examples are given to illustrate the usefulness of the coatings and the overall applicability of the CE-MS systems. It is concluded that capillary coatings can enhance the performance and stability of CE-MS systems, yielding a highly valuable and reproducible analytical tool.  相似文献   

16.
Four different organic solvents: dimethylformamide, 1,4-dioxane, n-propanol and ethanol were evaluated as alternative organic modifiers to acetonitrile for liquid chromatography (LC) separations. The aim was to establish common sets of chromatographic conditions that could be applied for LC hyphenation to inductively coupled plasma mass spectrometry (ICPMS) as well as to electrospray ionization MS (ESIMS). The approach was to evaluate candidate solvents that, compared to acetonitrile, potentially could give improved analytical performance (low solvent vapor loading, maximized analyte sensitivity and minimized carbon depositions on instrumental parts) in ICPMS analysis while retaining chromatographic and ESIMS performances. The study showed that dimethylformamide, 1,4-dioxane, n-propanol and ethanol all can be advantageous chromatographic modifiers for LC–ICPMS analysis, giving superior performance compared to acetonitrile. For the combined use of LC–ICPMS and LC–ESIMS with a common set of chromatographic conditions, n-propanol gave the best overall performance. The 195Pt+ signal in ICPMS was continuously monitored during a 0–60% organic solvent gradient and at 25% of organic modifier, 100% of the signal obtained at the gradient start was preserved for n-propanol compared to only 35% of the signal when using acetonitrile. Platinum detection limits were 5–8 times lower using n-propanol compared with acetonitrile. Signal-to-noise ratio in continuous ESIMS signal measurements was 100, 90 and 110 for a 100 μg/ml solution of leucine–enkephaline using acetonitrile, ethanol and n-propanol, respectively. Chromatographic efficiency in reversed phase separations was preserved for n-propanol compared to acetonitrile for the analysis of the whole protein cytochrome C and the peptide bacitracin on a column with particle and pore sizes of 5 μm and 300 Å, but slightly deteriorated for the separation of the peptides leucine–enkephaline and bacitracin on a 3 μm and 90 Å column as the peak width at half height for both peptides increased by a factor of two. The performance on the smaller dimensioned column could however be improved by running the separations at 40 °C.  相似文献   

17.
Fast atom bombardment mass spectrometry (FAB-MS) is applied to distinguish N-terminal series ions from C-terminal series ions of a peptide by on-probe acetylation, it providesvaluable information about the sequence of an unknown peptide. The FAB mass spectra containa number of characteristic ions at low-mass region in addition to the sequence ions at high-massregion. It was found that the ions below m/z 200 are characteristic of the amino acid composition ofthe peptide, from which the amino acid composition of the peptide could be estimated. Additionally,mixture analysis is also discussed.  相似文献   

18.
A sensitive and specific method for the quantitative determination of zearalenone (ZEN) and its major metabolites (α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL) and zearalanone (ZAN)) in animal plasma using liquid chromatography combined with heated electrospray ionization (h-ESI) tandem mass spectrometry (LC–MS/MS) and high-resolution Orbitrap® mass spectrometry ((U)HPLC–HR–MS) is presented. The sample preparation was straightforward, and consisted of a deproteinization step using acetonitrile. Chromatography was performed on a Hypersil Gold column (50 mm × 2.1 mm i.d., dp: 1.9 μm, run-time: 10 min) using 0.01% acetic acid in water (A) and acetonitrile (B) as mobile phases.  相似文献   

19.
Setting appropriate bin sizes to aggregate hyphenated high-resolution mass spectrometry data, belonging to similar mass over charge (m/z) channels, is vital to metabolite quantification and further identification. In a high-resolution mass spectrometer when mass accuracy (ppm) varies as a function of molecular mass, which usually is the case while reading m/z from low to high values, it becomes a challenge to determine suitable bin sizes satisfying all m/z ranges. Similarly, the chromatographic process within a hyphenated system, like any other controlled processes, introduces some process driven systematic behavior that ultimately distorts the mass chromatogram signal. This is especially seen in liquid chromatogram–mass spectrometry (LC–MS) measurements where the gradient of the solvent and the washing step cycle—part of the chromatographic process, produce a mass chromatogram with a non-uniform baseline along the retention time axis. Hence prior to any automatic signal decomposition techniques like deconvolution, it is a equally vital to perform the baseline correction step for absolute metabolite quantification. This paper will discuss an instrument and process independent solution to the binning and the baseline correction problem discussed above, seen together, as an effective pre-processing step toward liquid chromatography–high resolution-mass spectrometry (LC–HR-MS) data deconvolution.  相似文献   

20.
High-resolution time-of-flight mass spectrometry combined with high performance liquid chromatography is proposed for the detection and determination of 25 mycotoxins and 8 food additives (coccidiostats) in animal feed, using simplified and rapid sample preparation. We developed a procedure for the identification and determination of analytes by the standard addition method. The lower limit of the analytical range is 1 (400) µg/kg for mycotoxins; the analytical range for coccidiostats in feed is 10–200 mg/kg. The relative standard deviation of the results does not exceed 10%. The analysis time is 0.5–1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号