首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgel-based etalons have been shown to have visible color and unique spectral properties, which both depend on solution temperature and pH. In this investigation, pNIPAm-co-AAc microgel-based etalons were fabricated on the Au electrode of a quartz crystal microbalance (QCM), and the resonant frequency of the QCM monitored as a function of temperature, at pH 3.0. Furthermore, the resonant frequency at either pH 3.0 or 7.0 was monitored while keeping the solution temperature constant at various temperatures. In all cases, when the solution temperature was below the collapse transition for the microgels (∼32 °C), the resonant frequency at pH 3.0 was lower than at pH 7.0, which we attribute to the film transitioning from a deswollen to swollen state, respectively. It was observed that the magnitude of the resonant frequency change increased as the solution temperature approached the collapse temperature for the microgels. The overall sensitivity to pH was determined to be 1.3 × 10−8 M [H+] Hz−1 and a theoretical detection limit of 390 nM was obtained. This sensitivity will be exploited further for future biosensing applications.  相似文献   

2.
Poly (N-isopropylacrylamide)-co-acrylic acid (pNIPAm-co-AAc) microgels were “painted” on the Au electrode of a quartz crystal microbalance (QCM). Another Au layer (overlayer) was subsequently deposited on the microgel layer. This structure is known as a microgel-based etalon. These devices have been shown to exhibit optical properties (i.e., color) that depend on solution pH and temperature, among other things. Previously, we measured QCM frequency shifts that are a result of solution pH changes; the frequency shifts are a direct result of the pH dependent solvation state of the microgels that make up the etalon. In fact, the shifts observed for the etalons were much greater in magnitude than just a microgel layer immobilized on the QCM crystal without the Au overlayer. We reasoned that the Au overlayer lead to an enhancement of the observed frequency change due to its mass. In this submission we investigate how the Au overlayer thickness (mass) affects the observed sensitivity to solution pH. We found that the change in QCM resonant frequency depended dramatically on the mass of the Au overlayer.  相似文献   

3.
Block and graft copolymers with poly(N-isopropylacrylamide) and poly[(N-acetylimino)ethylene] (PNAI) sequences were synthesized via PNAI derivatives (macroinitiators or macromers). The polymerization yields for block copolymers synthesized in ethanol, using the PNAI macroinitiator, were low (<10%), except where photochemical polymerization was applied. By contrast, for the copolymerizations of N-isopropylacrylamide with the PNAI macromers, performed in alcoholic solution, quite high polymerization yields, around 80-90%, were reached. 1H-NMR and IR spectral and differential scanning calorimeter thermal data confirmed the copolymer formation. Thermosensitivity of the copolymers was investigated by means of turbidimetric technique as a function of their nature, average molecular weight and composition. It was found that the length of the chain of the PNAI macromer and the content in hydrophilic PNAI units of the resulted copolymer affected this behavior.  相似文献   

4.
Poly(N-isopropylacrylamide) (PNIPAAm) copolymers were synthesized in order to obtain co-polymers with a phase transition temperature slightly higher than the physiological temperature, as required by a new drug delivery concept described in a previous paper. Six hydrophilic comonomers bringing about a rise of the phase transition temperature were evaluated. The synthesized copolymers were characterized and the influence of the type and of the amount of the used comonomer on the phase transition temperature was discussed. Among the comonomers, Acrylamide (AAm), N-methyl-N-vinylacetamide (MVA), N-vinylacetamide (NVA), and N-vinyl-2-pyrrolidinone (VPL) were found to be capable to raise the phase transition temperature to a value slightly higher than 37 °C and to have adequate phase transition behavior. The selected four copolymers were subjected to an additional purification step that should make them fit to use as a controlling agent in drug delivery systems.  相似文献   

5.
Several composite hydrogels of poly(N-isopropylacrylamide) (pNIPAAm) with sodium montmorillonite (NaMM) have been synthesized using a fixed polymer/NaMM ratio (4:1 wt./wt.), but various monomer concentrations, in order to obtain hydrogels with different degrees of swelling, and thus different clay contents in the swollen state. For comparison, unfilled pNIPAAm gels have been also prepared at the same concentrations. The equilibrium swelling behaviour of the gels has been studied both in the swollen and in the shrunk state. In the swollen state, the polymer volume fraction increases with the initial monomer concentration C0. In the shrunk state, the polymer fraction in pNIPAAm hydrogels is dependent on the specimen size and on C0, whereas in the composite gels a constant polymer content is observed. When subjected to stepwise heating from 25 to 45 °C, unfilled gels undergo only poor deswelling. By contrast, complete deswelling takes place in composite gels. The latter show half-shrinking times varying over two orders of magnitude, depending on the monomer concentration and on the procedure followed to disperse NaMM, which determine the overall dispersion state of the filler, as evidenced by transmission electron microscopy (TEM). In particular, TEM observations show clay networking above a percolation threshold near 2.5 wt.% of NaMM. The effect of the incorporation of clay on the response to thermal stimuli is discussed in terms of the ability of NaMM to hinder the hydrophobic association of pNIPAAm segments and in terms of its dispersion state. It is suggested that, above the percolation threshold, NaMM forms a hydrophilic, physical network, through which water can flow also above the volume transition temperature, where pNIPAAm acquires a hydrophobic character.  相似文献   

6.
Fast responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels with improved properties were prepared in phenol aqueous solutions with different concentrations. Due to the expanded network structure in water, the resulted hydrogels are capable of absorbing a large amount of water, i.e. exhibits a much increased swelling ratio at room temperature. Importantly, the hydrogels demonstrated much faster response rate than that of traditional PNIPAAm hydrogel upon external temperature increase.  相似文献   

7.
Song JM  Asthana A  Kim DP 《Talanta》2006,68(3):940-944
Poly(N-isopropylacrylamide) (PNIPAM) is an interesting class of temperature sensitive, water soluble polymer that has a lower critical solution temperature (LCST) of 32 °C. Above the LCST, PNIPAM gets phase-separated and precipitates out from water. The fascinating temperature-sensitive property of PNIPAM has led to a growing interest in diverse fields of applications. Recently, capillary electrochromatography (CEC) has gained attention due to the wide range of applications based on the use of open tubular capillaries. In this paper, the use of phase-separated PNIPAM as a pseudostationary phase for CEC is demonstrated for the detection of single nucleotide polymorphisms (SNPs). Owing to the dynamic coating, the phase-separated PNIPAM particles did not require any immobilization technique and could exist as a mobile stationary phase in the open tubular capillary. The heteroduplex analyses of mutation samples could be successfully performed based on the phase-separated PNIPAM particles in the constructed CEC system. The CEC system, based on PNIPAM particles capable of having a narrow size distribution, shows great potential as an alternative to conventional DNA mutation systems.  相似文献   

8.
The complexation between poly(N,N-diethylacrylamide) (PDEA) and poly(acrylic acid) (PAA) in aqueous solution was studied by viscometric, potentiometric, and fluorescence techniques. It was found that an interpolymer complex formed between the two polymers through hydrogen bonding interactions with the stoichiometry of r=0.6 (r is unit molar ratio of PAA/PDEA), and the complex formation show the dependence on pH values. The phase behaviour studies showed that the lower critical solution temperature of the PDEA-PAA aqueous solution gradually increased with the increasing of r from 0.01 to 0.15, until a soluble system in the whole temperature region was obtained, which remained in the range of r=0.15-0.3. At higher PAA concentrations, when r is above 0.3, the system appeared phase separation, and almost no temperature dependence was observed. Based on these conclusion and structure characteristics of PDEA and PAA, a model containing only short sequences of monomer residues was proposed for the structure of PDEA-PAA complex.  相似文献   

9.
A temperature-responsive poly(N-isopropylacrylamide-co-N,N'-methylenebisacrylamide) [poly(NIPAAm-co-BIS)] monolith was prepared via a free-radical polymerization technique using an aqueous redox initiator in solution at -12°C. The effect of the % T (total monomer concentration/100 mL) and % C (cross-linker concentration/100 mL) on the visual form was investigated. The effect of the porogen on the pore structure was characterized by SEM. Under the optimum condition, the monolith for HPLC was successfully prepared and its mechanical strength and permeability have been studied. Furthermore, a temperature-dependent resolution of aromatic ketones was achieved using only water as mobile phase. The increasing interaction between solutes and the monolith was observed when temperature increased. The theoretical plate number of every analyte was more than 10(4).  相似文献   

10.
To fulfill the development of biotechnology and biomedicine, environmental-responsive polymer materials are wanted for isolation and purification of biomolecules. Herein, a novel thermo-responsive poly(methyl methacrylate) (PMMA)/poly(N-isopropylacrylamide) (PNIPAM) blend nanofibrous mat was developed, which can adsorb and release a model solute, bovine serum albumin (BSA), through the way of hydrophilicity–hydrophobicity transition behavior of PNIPAM. The uniform bead-free electrospun nanofibers were obtained from the homogeneous PMMA solution in the presence of different amount of PNIPAM. Scanning electron microscopy (SEM) analysis showed that the electrospinnability of PMMA was improved by the addition of PNIPAM, and the diameter of resultant nanofibers could be modulated by controlling the amount of PNIPAM. The thermo-responsive swelling behavior of the blend nanofibrous mats was reversible and reproducible by changing environmental temperature across the lower critical solution temperature (LCST) of PNIPAM. Moreover, the separation property of the blend nanofibrous mats was found to be related to the amount of PNIPAM as well as the concentration of BSA. As for a better separation effect, the nanofibers with higher content of PNIPAM were favorable.  相似文献   

11.
The linear swelling ratio α and the effective network chain length N of a series of poly(N,N-dimethylacrylamide) (PDMAAm) hydrogels were investigated as a function of the gel preparation concentration . PDMAAm hydrogels were prepared at a fixed cross-linker ratio but at various initial monomer concentrations. It was found that α is not a monotonic function of . As is increased, α first decreases up to about and remains constant in a narrow range of , but then it increases continuously. The -dependence of α is due to the variation of the network chain length N depending on the gel preparation concentration. In the range of below 0.1, N follows the scaling relationship , while at higher concentrations, N varies only slightly with . The increase of α with N obeys the relation , as predicted by the Flory-Rehner theory.  相似文献   

12.
Thermally responsive poly(N-isopropylacrylamide) (PNIPAAM) brushes were grafted from polystyrene particles synthesized with surfactant free emulsion polymerization and functionalized with a thin shell of ATRP initiator on the surface. The ATRP initiator was present in the shell either alone or along with copolymerized styrene and also a crosslinker. The grafted brushes were characterized with transmission electron microscopy before and after negative staining with uranyl acetate. Cryo-scanning electron microscopy confirmed the growth of extremely long PNIPAAM layers from the surface, which otherwise looked shrunken in the transmission electron microscope owing to dehydration and possibly the effect of staining agent. The amount of grafted polymer also increases proportionally to the increase of the monomer concentration in the initial reaction system. The change in character from hydrophilic to hydrophobic with temperature and salt was found to be reversible and fast. The adsorption of protein complexes (tobacco mosaic virus) could be readily achieved at higher temperatures indicating the potential of the grafted particles to be used as stationary phases in temperature regulated chromatographic separations.  相似文献   

13.
Temperature-responsive chromatography for the separation of biomolecules   总被引:2,自引:0,他引:2  
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here.  相似文献   

14.
An asymmetric linear-dendritic block copolymer of polyether dendrimer and poly(N-isopropylacrylamide) was prepared by an atom transfer radical polymerization method. The self-assembly behavior and thermosensitive property of this copolymer in water were studied by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence probe spectroscopy. It was found that the thermosensitive phase transition takes place at the temperature of 37.5 °C; simultaneously the spherical aggregates grow into larger entangled nanotubules. The unique temperature-sensitive supramolecular aggregates may make them especially useful as intelligent capsules for drug delivery systems and as chemical sensors.  相似文献   

15.
Thermosensitive N-isopropylacrylamide (NIPA) hydrogels were synthesized by a free radical copolymerization with N,N′-methylenebisacrylamide (MBAA) in four solvents: water, ethanol, acetone and N,N-dimethylformamide. The swelling and elastic properties of the hydrogels were affected by the synthesis-solvents; the hydrogels (e.g. NIPA/MBAA = 1000/50 mol/m3-pre-gel solution) synthesized in water have smaller swelling volume and larger shear modulus at 10 °C than those synthesized in amphiphilic solvents. The network structure of hydrogels was estimated in terms of the conversion and two sorts of effective crosslinking density based on the Flory theory and the concentration of crosslinker. The hydrogels synthesized in water can have the microscopic inhomogeneous network arising from the entanglement of polymer chains, while the hydrogels synthesized in amphiphilic solvents can have the homogeneous network arising from the polymer concentration lower than the pre-gel solution and can be similar in network structure to the lightly crosslinked hydrogel synthesized in water.  相似文献   

16.
Poly(N-isopropylacrylamide) (PIPAAm) brush-grafted porous polystyrene beads with variable grafted polymer densities were prepared using surface-initiated atom transfer radical polymerization (ATRP) for applications in thermo-responsive chromatography. Utilization of these grafted beads as a stationary phase in aqueous chromatographic analysis of insulin provides a graft density-dependent analyte retention behavior. The separations calibration curve on PIPAAm-grafted polystyrene was obtained using pullulan standards and exhibited inflection points attributed to analyte diffusion into bead pores and partitioning into grafted PIPAAm brush surfaces. Presence of these inflection points supports a separation mechanism where insulin penetrates pores in polystyrene beads and hydrophobically interacts with PIPAAm brushes grafted within the pores. Control of PIPAAm brush graft density on polystyrene facilitates effective aqueous phase separation of peptides based on thermally modulated hydrophobic interactions with grafted PIPAAm within stationary phase pores. These results indicated that PIPAAm brush-grafted porous polystyrene beads prepared by surface-initiated ATRP was effective stationary phase of thermo-responsive chromatography for aqueous phase peptide separations.  相似文献   

17.
Sol-gel and gel-sol thermal transition of methylcellulose/water, kappa-carrageenan/water and methylcellulose/kappa-carrageenan/water mixtures was investigated utilizing small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) and oscillatory rheological experiments in temperature regime from 20 to 80 degrees C. Methylcellulose (E461) and kappa-carrageenan (E407) are well-known additives used for gelation in various nutrition and other products. The formulation and characterization of a mixed thermoreversible methylcellulose/kappa-carrageenan/water gel with very interesting double thermal transition gel-sol-gel upon heating was possible. This specific thermal behavior provides a liquid state of the system between the low-temperature and high-temperature gel-state and at the same time allows for the easy temperature tuning of the system's state. As such this system is suggested to be further tested as potential carrier for various functional colloidal systems.  相似文献   

18.
A bistable switching photochromic poly(N-isopropylacrylamide) with spironaphthoxazine hydrogel copolymer (PNIPA-SPO-BIS) has been designed and synthesized by radical polymerization. The PNIPA-SPO-BIS copolymer is identified by 1H NMR spectroscopy, FIT-IR spectroscopy and gel permeation chromatography (GPC). The morphology of the internal microstructures of the PNIPA-SPO-BIS hydrogels was observed by scanning electron microscopy (SEM). The PNIPA-SPO-BIS copolymer showed excellent photochromic behavior in water solution and in gel state. In addition, erasable and rewritable (EARW) photoimaging on the PNIPA-SPO-BIS hydrogel was successfully demonstrated. A novel optical data storage materials based on photochromic hydrogel was developed. These developments are crucial for fundamental studies and eventual technical application for all-photo mode high-density optical data storage.  相似文献   

19.
Copolymers of N-isopropylacrylamide (NIPAAm) and itaconic acid (IA) having various compositions were synthesized using free radical solution polymerization in 1,4-dioxane at 50 °C with α,α′-azobisisobutyronitrile (AIBN) as initiator. The structures of the copolymers were confirmed by Fourier transform infrared (FTIR) spectroscopic technique. The copolymer compositions were determined by conductometric and potentiometric methods from the inflection points in the acid-base titration curves and by FTIR spectroscopy through recorded analytical absorption bands for NIPAAm (1620 cm−1 for CO stretching of secondary amides) and for IA (1704 cm−1 for CO stretching) units, respectively. Monomer reactivity ratios of IA (F1)-NIPAAm (F2) pair were estimated using the Finemann-Ross, the inverted Finemann-Ross, the Kelen-Tüdós and the extended Kelen-Tüdós graphical methods. The values ranged from 0.40 to 0.60 for r1 and from 1.20 to 1.90 for r2, depending on the conversion percentage, calculation methods of monomer reactivity ratios and determination methods of copolymer compositions. In all cases, r1r2 < 1 and r1 < r2 indicate the random distribution of the monomers in the final copolymers and the presence of higher amount of NIPAAm units in the copolymer than that in the feed, respectively.  相似文献   

20.
A new kind of the thermo-sensitive and fluorescent complex of poly(N-isopropylacrylamide) (PNIPAM) and Tb(III) was synthesized by free radical polymerization, in which PNIPAM was used as a polymer ligand. The complex was characterized by using X-ray photoelectron spectroscopy (XPS), ultraviolet-visual (UV), Fourier transform infrared (FT-IR) and fluorescence spectroscopy. The results from the experiments indicated that there is a strong interaction between PNIPAM and Tb(III), leading to a decrease in the electron density of nitrogen and oxygen atoms and an increase in the electron density of Tb(III) in the PNIPAM containing Tb(III) by contrast with PNIPAM and Tb(III), respectively, meanwhile, exhibiting that the Tb(III) is mainly bonded to oxygen atoms in the polymer chain of PNIPAM and formed the complex of PNIPAM-Tb(III). After forming the PNIPAM-Tb(III) complex, the emission fluorescence intensity of Tb(III) in the PNIPAM-Tb(III) complex is significantly enhanced because the effective intramolecular energy transfer from PNIPAM to Tb(III). Especially, the emission intensity of the fluorescence peak at 547 nm can be increased as high as 145 times comparing with that of the pure Tb(III). The intramolecular energy transfer efficiency for fluorescence peak at 547 nm can reach as high as 68%. The fluorescence intensity is related the weight ratio of Tb(III) and PNIPAM in the PNIPAM-Tb(III) complex. When the weight ratio is 1.4%, the maximum fluorescence enhancement can be obtained. Nevertheless, the lower critical solution temperature of PNIPAM containing a low content of Tb(III) has not obviously changed after the formation of the complex of PNIPAM-Tb(III) by the interaction between PNIPAM and Tb(III). This novel thermosensitive and fluorescence characterization of the PNIPAM-Tb(III) complex may be useful in the fluorescence systems and the biomedical field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号