首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate curve resolution with alternating least squares (MCR-ALS) is applied for the first time to the simultaneous analysis of electrochemical and spectroscopic data. Then, a data analysis is done with augmented matrices constituted by Differential Pulse Polarography and Circular Dichroism data submatrices. The use of proper, and different for each submatrix, constrains in the iterative ALS optimization allows to obtain chemically meaningful results constituted by a common matrix containing the concentration profiles, and two matrices with the pure electrochemical and spectroscopic signals. MCR-ALS is applied to the study of the complexation of Cd by Cys-Gly, a glutathione-fragment of great interest for understanding metal-phytochelatins complexation.  相似文献   

2.
近年来,水分解、氧气/二氧化碳还原等电化学能源转换技术为解决全球能源短缺及环境问题提供了新的思路和方向.然而,对这些能源转换技术的反应机理及其催化剂的活性位点目前仍缺乏深刻的认识和理解,这限制了高效、稳定催化剂的开发,以致阻碍该类电化学技术的进一步发展.原位光谱技术的快速发展为解决上述问题提供了坚实的基础,其中拉曼光谱...  相似文献   

3.
X-ray spectroscopy is a powerful tool to understand the electronic and local structure of electrocatalysts under operating conditions. Although catalysis itself is performed by electroactive species, other, non-electroactive ones play a critical role in electrocatalytic reactions as well. Cations, anions, solvents or reactants all have significant effects in the efficiency of electrocatalytic reactions. Focusing on the electrochemical reduction of carbon dioxide, we give a short summary of the current status of the in situ/operando X-ray spectroscopy experiments performed on electroactive species, as well as a perspective on the techniques and setups that could be used to probe non-electroactive ones.  相似文献   

4.
In biotechnology, strong emphasis is placed on the development of wet chemical analysis and chromatography to separate target components from a complex matrix. In bioprocessing, the development of single compound biosensors is an important activity. The advantages of these techniques are their high sensitivity and specificity. Inline or online monitoring by means of spectroscopy has the potential to be used as an “all-in-one” analysis technique for biotechnological studies, but it lacks specificity. Multivariate curve resolution (MCR) can be used to overcome this limitation. MCR is able to extract the number of components involved in a complex spectral feature, to attribute the resulting spectra to chemical compounds, to quantify the individual spectral contributions, and to use this quantification to develop kinetic models for the process with or without a priori knowledge. After a short introduction to MCR, two applications are presented. In the first example, the spectral features of hemp are monitored and analysed during growth. MCR provides unperturbed spectra on the activity of, for example, lignin and cellulose during plant development. In a second example, the kinetics of a laccase enzyme-catalysed degradation of aromatic hydrocarbons are calculated from UV/VIS spectra.  相似文献   

5.
In this paper, we present the use of one of the self-modeling curve resolution techniques, band-target entropy minimization (BTEM), which is independent of any spectral library, to elucidate Raman pure component spectra of two different manganese oxides arising from laser-induced structural changes. It is often extremely difficult to obtain the pure Raman spectrum of MnO2 without changing it to another structural form. However, using BTEM to analyze the collected in situ Raman spectra measured as a function of laser exposure time, has enabled us to obtain both the pure component spectra of the original sample and the product due to laser irradiation. This technique proves to be an efficient Raman spectral interpretation method for thermal sensitive solid samples.  相似文献   

6.
An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid–base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described.  相似文献   

7.
A new Pt monolayer electrocatalyst concept is described and the results of electrochemical and X-ray absorption spectroscopy (XAS) studies are presented. Two new methods that facilitate the application of this concept in obtaining ultra-low-Pt-content electrocatalysts have been developed. One is the electroless (spontaneous) deposition of a Pt submonolayer on Ru nanoparticles, and the other is a deposition of a Pt monolayer on Pd nanoparticles by redox displacement of a Cu adlayer. The Pt submonolayer on Ru (PtRu20) electrocatalyst demonstrated higher CO tolerance than commercial catalysts under conditions of rotating disk experiments. The long-term stability test showed no loss in performance over 870 h using a fuel cell operating under real conditions, even though the Pt loading was approximately 10% of that of the standard Pt loading. In situ XAS indicated an increase in d-band vacancy of deposited Pt, which may facilitate partly the reduced susceptibility to CO poisoning for this catalyst. The kinetics of O2 reduction on a Pt monolayer on Pd nanoparticles showed a small enhancement in comparison with that from a Pt nanoparticle electrocatalyst. The increase in catalytic activity is partly attributed to decreased formation of PtOH, as shown by XAS experiments.  相似文献   

8.
The Varimax extended rotations (VER) have been proposed as a new method to mathematically resolve severely overlapped peaks in chromatographic experiments that produce bilinear data. VER employs a four-step procedure to determine the relative concentration and identity of the components that comprise a severely overlapped chromatographic peak. In the first step, the data are pre-processed to ensure that they are in a form suitable for multivariate curve resolution. The second step involves principal component analysis, which reduces the dimensionality of the data matrix while simultaneously retaining the information present in the data. In the third step, a new coordinate system is developed for the data using a Varimax rotation followed by a so-called extended rotation, which assists in identifying the so-called pure regions in the peak. Identifying these regions is crucial to rotating the concentration and spectral matrices towards a solution. The fourth step utilizes alternating least squares (ALS) to improve the estimates of the concentration and spectral profiles of each component. Results from real and simulated data are used to illustrate the efficacy and simplicity of the proposed method.  相似文献   

9.
Despite the growing popularity of X-ray absorption spectroscopy (XAS) in scientific research, many researchers do not receive formalized training on this technique. Some of them learned from online resources, which only briefly introduce XAS and its applications. Here, this article aims to provide the overview of tips about the XAS analysis, general rules, as well as required information for presenting XAS data in publications, and some common mistakes in XAS data interpretations. Armed with these basics, the motivated aspiring XAS researchers will find existing resources more accessible and can progress much faster in understanding and using XAS.  相似文献   

10.
The band-target entropy minimization (BTEM) curve resolution technique has been used to analyze in situ reflection-absorption infrared spectroscopy (RAIRS) data of CO chemisorption on Ni(1 1 1) single crystal surfaces. The bilinearity assumption for pRAIRS data, that is, negative logarithm to the base 10 of raw reflectance RAIRS data, was found to be sufficiently valid for the test data. A total of 11 real pure component pRAIRS spectra were elucidated via BTEM in tandem with an iterative residual spectral data analysis. Furthermore, 2 abstract pure component right singular vectors were found to account for all the pRAIRS non-linearities, baseline drifts and other spectral noise. In total, 100.2% of the pRAIRS signals were accounted for by these 13 spectral components. The 11 real pure component pRAIRS spectra and their corresponding relative concentration kinetic sequences correlate with 6 well-known adsorbed CO domain structures. Moreover, amongst the BTEM resolved spectra were five new bands that were not previously observed using conventional visual identification methods adopted by surface chemists. These new bands engendered new understanding to the mechanism of CO chemisorption on Ni(1 1 1). The combination of BTEM with residual spectral analysis was thus demonstrated to be efficacious for curve resolution of in situ RAIRS data obtained from surface chemistry studies.  相似文献   

11.
An analytical methodology was developed for detection of malathion in the peels of tomatoes and Damson plums by surface-enhanced Raman imaging spectroscopy and multivariate curve resolution. To recover the pure spectra and the distribution mapping of the analyzed surfaces, non-negative matrix factorization (NMF), multivariate curve calibration methods with alternating least squares (MCR-ALS) and MCR with weighted alternating least square (MCR-WALS) were utilized. Error covariance matrices were estimated to evaluate the structure of the error over all the data. For the tomato data, NMF-ALS and MCR-ALS presented excellent spectral recovery even in the absence of initial knowledge of the pesticide spectrum. For the Damson plum data, owing to heteroscedastic noise, MCR-WALS produced better results. This methodology enabled detection below to the maximum residue limit permitted for this pesticide. This approach can be implemented for in situ monitoring because it is fast and does not require extensive manipulation of samples, making its use feasible for other fruits and pesticides as well.  相似文献   

12.
Accelerate oxidative degradation of six vegetable oils was monitored using FTIR and FT-Raman spectroscopy. Two-dimensional correlation spectroscopy and multivariate curve resolution alternating least squares (MCR-ALS) were applied to the analysis of the data. The use of hetero-spectral two-dimensional correlation of FTIR and FT-Raman data allowed the use of well established band assignments to interpret less clearly assigned spectral features. With a moving window approach it was possible to obtain simplified two-dimensional correlation maps and to detect compounds evolving with different kinetic. Simultaneous analysis of the oxidation experiments of the six different oils monitored by both spectroscopic techniques was performed using MCR-ALS. Although a complete resolution of the data was not possible, the spectral changes occurring during the oxidative degradation of the oils were described with a five-component model. The two fundamentally different chemometric approaches lead to coincident results.  相似文献   

13.
The significance of evolving mixtures structural spectroscopic studies might appear limited when the experimental spectra do not present a sufficient quality for a precise interpretation. It is the case when the chemical behaviour of macromolecules is studied on the basis of infrared spectra. If the effective resolution is low, the spectral profiles appear similar despite the applied chemical conditions change. This makes impossible the interpretation of the raw spectra and mathematical treatments are required to separate the different contributions that overlap.To determine the behaviour of the reactive sites of humic acids in the binding with heavy metals, infrared spectra are recorded under various chemical conditions. The cation to be considered is Pb2+ and the two chemical variables to be studied are pH and initial lead concentration. Four series of FTIR spectra are recorded, but no visible difference can be directly assigned to the different chemical states of the macromolecules. Multivariate self-modelling curve resolution is thus proposed as a tool for resolving these complex and strong overlapping datasets. First, initial estimates are obtained from pure variable detection methods: it comes out that two spectra are enough to reconstruct the experimental matrices. In a further step, the application of the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm with additional constraints on each individual dataset, as well as on column-wise augmented matrices, allows to optimise the profiles and spectra that appear to be highly characterising the acid and the salt form of the molecule. Moreover, the concentrations profiles associated to these two limit spectral forms allow interpreting the analytical measurements made during the reactions between humic acids and H+ or Pb2+. Consequently, depending on the initial state of the humic acid, two distinct reactional mechanisms are proposed.  相似文献   

14.
Changes in the state of charge of a high-area RuOx electrode in an operating RuOx|Nafion|IrOx supercapacitor were monitored in situ by time-resolved, transmission Ru K-edge X-ray absorption spectroscopy (XAS). Linear and reversible variations in the intensity of the transmitted X-ray beam as a function of time were found by fixing the energy of the incident X-ray beam, Ei, at judiciously selected values within the Ru K-edge X-ray near edge structure (XANES), while the supercapacitor was charged and discharged at constant current. The sign of the slope of these temporal signals was found to vary, depending on the value of Ei. This behavior could be rationalized based on the spectral differences between the Ru K-edge XANES of RuOx in the fully oxidized and fully reduced states, recorded in situ from films of the material electrodeposited on a gold substrate in the fluorescence mode.This paper is dedicated to Prof. Wolf Vielstich on the occasion of his 80th birthday for his outstanding contributions to electrochemistry  相似文献   

15.
In the present contribution, a new combination of multivariate curve resolution-correlation optimized warping (MCR-COW) with trilinear parallel factor analysis (PARAFAC) is developed to exploit second-order advantage in complex chromatographic measurements. In MCR-COW, the complexity of the chromatographic data is reduced by arranging the data in a column-wise augmented matrix, analyzing using MCR bilinear model and aligning the resolved elution profiles using COW in a component-wise manner. The aligned chromatographic data is then decomposed using trilinear model of PARAFAC in order to exploit pure chromatographic and spectroscopic information. The performance of this strategy is evaluated using simulated and real high-performance liquid chromatography-diode array detection (HPLC-DAD) datasets. The obtained results showed that the MCR-COW can efficiently correct elution time shifts of target compounds that are completely overlapped by coeluted interferences in complex chromatographic data. In addition, the PARAFAC analysis of aligned chromatographic data has the advantage of unique decomposition of overlapped chromatographic peaks to identify and quantify the target compounds in the presence of interferences. Finally, to confirm the reliability of the proposed strategy, the performance of the MCR-COW-PARAFAC is compared with the frequently used methods of PARAFAC, COW-PARAFAC, multivariate curve resolution-alternating least squares (MCR-ALS), and MCR-COW-MCR. In general, in most of the cases the MCR-COW-PARAFAC showed an improvement in terms of lack of fit (LOF), relative error (RE) and spectral correlation coefficients in comparison to the PARAFAC, COW-PARAFAC, MCR-ALS and MCR-COW-MCR results.  相似文献   

16.
Time-resolved X-ray absorption spectroscopy (TR-XAS) possesses excellent capabilities to reveal quantitative phase composition and average valence together with the evolution of the local structure of a system under dynamic reaction conditions. The work discussed here focused on time-resolved in-situ XAS investigations aiming, first, at understanding structural evolution under dynamic conditions and, second, at revealing properties of the system studied not available from investigations under stationary conditions. Hence, not only was the local structure of a material studied under reaction conditions, but characteristic properties of the reaction, such as reaction intermediates or the kinetics of the reaction, were also elucidated. The solid–gas reactions presented here clearly demonstrate the potential of TR-XAS investigations to extend the suitability of XAS for in-situ studies in solid-state chemistry to investigations under dynamic conditions.  相似文献   

17.
This review describes the major advantages and pitfalls of iterative and non-iterative multivariate curve resolution (MCR) methods combined with gas chromatography (GC) data using literature published since 2000 and highlighting the most important combinations of GC coupled to mass spectrometry (GC–MS) and comprehensive two-dimensional gas chromatography with flame ionization detection (GC × GC-FID) and coupled to mass spectrometry (GC × GC–MS). In addition, a brief summary of some pre-processing strategies will be discussed to correct common issues in GC, such as retention time shifts and baseline/background contributions. Additionally, algorithms such as evolving factor analysis (EFA), heuristic evolving latent projection (HELP), subwindow factor analysis (SFA), multivariate curve resolution-alternating least squares (MCR-ALS), positive matrix factorization (PMF), iterative target transformation factor analysis (ITTFA) and orthogonal projection resolution (OPR) will be described in this paper. Even more, examples of applications to food chemistry, lipidomics and medicinal chemistry, as well as in essential oil research, will be shown. Lastly, a brief illustration of the MCR method hierarchy will also be presented.  相似文献   

18.
This paper introduces some chemometric methods, i.e., self-modeling curve resolution (SMCR), multivariate curve resolution-alternating least squares (MCR-ALS) and parallel factor analysis (PARAFAC and PARAFAC2), which are used to evaluate in vitro dissolution testing data detected by a UV-vis spectrophotometer on meloxicam-mannitol binary systems. These systems were chosen because of their relative simplicity to apply as part of the validation process illustrating the effectiveness of the developed and applied chemometric method. The paper illustrates the failure of PARAFAC methods used before for pharmaceutical data evaluations as well, and we suggest application of the feasible band form given by SMCR as a more general procedure.Steps to improve the dissolution behavior of drugs have become among the most interesting aspects of pharmaceutical technology, and our results show that a larger particle size of meloxicam is advantageous for dissolution. Instead of the use of only one characteristic wavelength, appropriate chemometric methods can furnish more information from dissolution testing data, i.e., the individual dissolution rate profiles and the individual spectra for all the components can be obtained without resorting to any separation techniques such as HPLC.  相似文献   

19.
This is the first systematic study exploring the potential of high-energy EXAFS as a structural tool for lanthanoids and third-row transition elements. The K-edge X-ray absorption spectra of the hydrated lanthanoid(III) ions both in aqueous solution and in solid trifluoromethanesulfonate salts have been studied. The K-edges of lanthanoids cover the energy range from 38 (La) to 65 keV (Lu), while the corresponding energy range for the L(3)-edges is 5.5 (La) to 9.2 keV (Lu). We show that the large widths of the core-hole states do not appreciably reduce the potential structural information in the high-energy K-edge EXAFS data. Moreover, for lanthanoid compounds, more accurate structural parameters are obtained from analysis of K-edge than from L(3)-edge EXAFS data. The main reasons are the much wider k range available and the absence of double-electron transitions, especially for the lighter lanthanoids. A comparative K- and L(3)-edge EXAFS data analysis of nonahydrated crystalline neodymium(III) trifluoromethanesulfonate demonstrates the clear advantages of K-edge analysis over conventionally performed studies at the L(3)-absorption edge for structural investigations of lanthanoid and third-row transition metal compounds. The coordination chemistry of the hydrated lanthanoid(III) ions in aqueous solution and solid trifluoromethanesulfonate salts, based on the results of both the K- and L(3)-edge EXAFS data, is thoroughly discussed in the next paper in this series (I. Persson, P. D'Angelo, S. De Panfilis, M. Sandstr?m, L. Eriksson, Chem. Eur. J. 2008, 14, DOI: 10.1002/chem.200701281).  相似文献   

20.
The hydration process of lithium iodide, lithium bromide, lithium chloride and lithium nitrate in water was analyzed quantitatively by applying multivariate curve resolution alternating least squares (MCR-ALS) to their near infrared spectra recorded between 850 nm and 1100 nm. The experiments were carried out using solutions with a salt mass fraction between 0% and 72% for lithium bromide, between 0% and 67% for lithium nitrate and between 0% and 62% for lithium chloride and lithium iodide at 323.15 K, 333.15 K, 343.15 K and 353.15 K, respectively. Three factors were determined for lithium bromide and lithium iodide and two factors for the lithium chloride and lithium nitrate by singular value decomposition (SVD) of their spectral data matrices. These factors are associated with various chemical environments in which there are aqueous clusters containing the ions of the salts and non-coordinated water molecules. Spectra and concentration profiles of non-coordinated water and cluster aqueous were retrieved by MCR-ALS. The amount of water involved in the process of hydration of the various salts was quantified. The results show that the water absorption capacity increases in the following order LiI < LiBr < LiNO3 < LiCl. The salt concentration at which there is no free water in the medium was calculated at each one of the temperatures considered. The values ranged between 62.6 and 65.1% for LiBr, 45.5–48.3% for LiCl, 60.4–61.2% for LiI and 60.3–63.7% for LiNO3. These values are an initial approach to determining the concentration as from which crystal formation is favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号