首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used a new reactive species OH? to fabricate active horseradish peroxidase (HRP) micropatterns with a high resolution by scanning electrochemical microscopy (SECM) coupled with a carbon fiber disk electrode as the SECM tip. In this method, except for active HRP micropatterns predesigned other regions on a HRP‐immobilized substrate were deactivated by OH? generated at the tip held at ?1.7 V in 1.0 mol/L KCl containing 2.0×10?3 mol/L benzoquinone (BQ) (pH 8.0). The feedback mode of SECM with a tip potential of ?0.2 V was used to characterize the active HRP micropatterns in 1.0 mol/L KCl containing 2.0×10?3 mol/L BQ and 2.0×10?3 mol/L H2O2.  相似文献   

2.
The use of scanning electrochemical microscopy (SECM) for the qualitative and quantitative determination of sulfapyridine (SPY) in milk is described. A direct competitive immunoassay was performed involving an antibiotic horseradish peroxidase (HRP)‐labeled analog and using selective capture antibodies immobilized on the surface of Protein G‐modified glassy carbon plates. SECM detection was accomplished by means of the sample generator/tip collector (GC) mode involving the reduction of benzoquinone (BQ) generated upon the HRP‐catalyzed oxidation of hydroquinone (HQ) at the modified substrate surface in the presence of H2O2. The detection limit for SPY in milk samples was as low as 0.13 ng mL?1.  相似文献   

3.
A high-sensitive nonenzymatic hydrogen peroxide (H2O2) biosensor based on cuprous iodide and graphene (CuI/Gr) composites has been explored for the detection of H2O2 released by living cells and monitoring the oxidative stress of cells under excellular stimulation. The biosensor properties were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), amperometric i-t curve, and the redox-competition mode of scanning electrochemical microscopy (SECM). Our observations demonstrate that the CuI/Gr nanocomposites modified glassy carbon electrode (GCE) exhibits excellent catalytic activity for H2O2 with relatively low detection limit and a wide linear range from 0.5 μM to 3 mM. Moreover, the redox-competition mode of SECM imaging study further illustrates the improved electrochemical catalytic capability for H2O2 reduction with CuI/Gr nanocomposites deposited on graphite electrode. Hence, the as-prepared nonenzymatic H2O2 biosensor could be used to detect H2O2 release from different kinds of living cells under stimulation while eliminating the interference of ascorbic acid.  相似文献   

4.
Scanning electrochemical microscopy (SECM) was used to monitor in situ hydrogen peroxide (H2O2) produced at a polarized water/1,2-dichloroethane (DCE) interface. The water/DCE interface was formed between a DCE droplet containing decamethylferrocene (DMFc) supported on a solid electrode and an acidic aqueous solution. H2O2 was generated by reducing oxygen with DMFc at the water/DCE interface, and was detected with a SECM tip positioned in the vicinity of the interface using a substrate generation/tip collection mode. This work shows unambiguously how the H2O2 generation depends on the polarization of the liquid/liquid interface, and how proton-coupled electron transfer reactions can be controlled at liquid/liquid interfaces.  相似文献   

5.
The characterization of the organic components in a complex, multilayered paint structure is fundamental for studying painting techniques and for authentication and restoration purposes. Proteinaceous materials, such as animal glue, are of particular importance since they are widely used as binders, adhesives and for gilding. Even though proteins are usually detected by chromatographic and proteomic techniques, immunological methods represent an alternative powerful approach to protein analysis thanks to the high specificity of antigen–antibody reactions. Our previous studies demonstrated that ovalbumin and casein could be localized in paint cross-sections with high sensitivity and good spatial resolution (i.e. within the single painting layers) by using chemiluminescent (CL) immunochemical microscope imaging. In the present research work, we describe for the first time the immunolocalization of collagen (the main protein of animal glue) in paint cross-sections by CL imaging microscopy. Two different analytical protocols have been developed, allowing either the detection of collagen or the simultaneous detection of collagen and ovalbumin in the same paint sample. The assays were used to detect collagen and ovalbumin in cross-sections from model samples and historical paintings (a wall painting dated to 1773–1774 and a painted wood panel of the Renaissance period) in order to achieve information on paint techniques and past restoration interventions.
Figure
Left Reflected light image of a cross-section of a sample taken from a Renaissance painted wood panel. Right Localization of the proteins collagen (from animal glue) and ovalbumin in a painting cross-section assessed by multiplexed chemiluminescence immunochemical imaging (the chemiluminescent signals corresponding to collagen and ovalbumin are displayed in shades of blue and red, respectively)  相似文献   

6.
Immunoassay is one of the biochemical analytical techniques using the specific antigen antibody com-plexation for analytical purposes. It has extensive ap-plication in clinical diagnostics, prevention and cure of diseases, and virus diagnostics. The presentation and progress of immunoassay methodology are one of the greatest achievements of bioanalytical chemistry. It is estimated that several-hundred millions of immuno-analytical determinations are carried out every year all over the world. E…  相似文献   

7.
Hydrogen peroxide and hydroxyl radical, both important members of the reactive oxygen species (ROS) family, can cause serious oxidative damages in biological systems. In order to proclaim and prevent oxidation stress, researches on the biomolecule oxidation induced by H2O2 or OH. are in crucial need. However, due to the high reactivity of ROS, traditional methods are difficult to achieve the in situ quantitative investigations on those reactions involving ROS. In this work, using scanning electrochemical microscopy technique (SECM) in a tip generation‐substrate collection mode (TG‐SC), the controllable release and the high‐efficiency collection of electrogenerated H2O2 were achieved. Compared to ex situ fluorescence method, SECM improved the collection efficiency approximately two times larger. Based on it, SECM combined with surface plasmon resonance (SPR) was employed to in situ monitor the protein oxidation (taking Cu12+? MT as a model) induced by H2O2. OH., which was generated from the interaction between H2O2 and Cu12+? MT, can attack the peptide chain and induced the unrepairable protein oxidation damage. The whole process was quantitatively characterized by SPR, and the linear relationship between SPR dip shift and the amounts of released H2O2 was successfully built. Our work proves that the combined SECM‐SPR technique can realize the in situ quantitative determinations of the biomolecule oxidation induced by ROS, which affords an avenue for further elucidation on the mechanisms of oxidation stress in organisms.  相似文献   

8.
An amperometric biosensor based on horseradish peroxidase (HRP) and ??-Al2O3/chitosan composite film at a glassy carbon electrode has been developed. Hydrogen peroxide (H2O2) was detected with the aid of ferrocene monocarboxylic acid mediator to transfer electrons between the electrode and HRP. The morphology and composition of the modified electrode were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and amperometry. The effects of HRP concentration, the applied potential, and the pH values of the buffer solution on the response of the sensor were investigated for optimum analytical performance. The proposed biosensor showed high sensitivity (0.249?A M?1?cm?2) and a fast response (<5?s) to H2O2 with the detection limit of 0.07???M. The linear response range of the enzyme electrode to H2O2 concentration was from 0.5 to 700???M with a correlation coefficient of 0.9998. The apparent Michaelis-Menten constant of the biosensor was calculated to be 0.818?mM, exhibiting a high enzymatic activity and affinity for H2O2.  相似文献   

9.
Local ion activity changes in close proximity to the surface of an oxygen depolarized cathode (ODC) were measured by scanning electrochemical microscopy (SECM). While the operating ODC produces OH? ions and consumes O2 and H2O through the electrocatalytic oxygen reduction reaction (ORR), local changes in the activity of OH? ions and H2O are detected by means of a positioned Pt microelectrode serving as an SECM tip. Sensing at the Pt tip is based on the pH‐dependent reduction of PtO and obviates the need for prior electrode modification steps. It can be used to evaluate the coordination numbers of OH? ions and H2O, and the method was exploited as a novel approach of catalyst activity assessment. We show that the electrochemical reaction on highly active catalysts can have a drastic influence on the reaction environment.  相似文献   

10.
The present work describes the development of a selective, sensitive and stable sensing microsensor for scanning electrochemical microscopy (SECM) to measure H2O2 during electrochemical reduction of oxygen. The microsensor is based on graphene and Poly(3,4‐ethylenedioxythiophene) composite as support to iron (III) hexacyanoferrate (II) (PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor). The electrochemical properties of the PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM). The PEDOT/graphene/FeIII4[FeII(CN)6]3 microsensor showed an excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction with a diminution of the overpotential of about 500 mV in comparison to the process at a bare gold microelectrode. The microsensor presented excellent performance for two dimensional mapping of H2O2 by SECM in 0.1 mol L?1 phosphate buffer solution (pH 7.0). Under optimized conditions, a linear response range from 1 up to 1000 µmol L?1 was obtained with a sensitivity of 0.08 nA L µmol?1 and limit of detection of 0.5 µmol L?1.  相似文献   

11.
The redox competition mode of scanning electrochemical microscopy (SECM) was used to visualize differences in local electrocatalytic activity of Fe and Ni hexacyanoferrates (HCFs) in hydrogen peroxide reduction. The uniform round-shaped spots of electrocatalysts for the SECM measurements were electrochemically deposited using a scanning droplet cell. A negligible activity of NiHCF towards H2O2 reduction compared to Prussian Blue (PB) was observed. The dependence of local Prussian Blue activity on the applied potential was investigated. The proposed strategy explores the potential application of SECM as a rapid screening tool for HCF film activity within a single experiment.  相似文献   

12.
 An investigation of an array of four Pt microband electrodes 25 μm wide and spaced 25 μm apart was performed with the scanning electrochemical microscope (SECM). Where possible the SECM measurements were confirmed with conventional electrochemical measurements. It is shown how the sensiti- vity of the SECM recycling current to the activity of the underlying surface can be used to probe the homogeneity of enzyme-modified microelectrodes. The diffusion of H2O2 between these micro enzyme- electrodes and unmodified electrodes was investigated and it was demonstrated how the SECM can be a powerful tool in the elucidation of the properties of these electrodes. Received June 8, 1998. Revision November 12, 1998.  相似文献   

13.
We report on a nano-array sensor for hydrogen peroxide (H2O2) that is based on a nanoporous anodic aluminum oxide template. This was used as a matrix for the co-immobilization of horseradish peroxidase (HRP) and methylene blue (MB) on the surface of an indium tin oxide electrode. The immobilized HRP retained its natural activity and MB is capable of efficiently shuttle electrons between HRP and the electrode. The new electrode was characterized by SEM and electrochemical methods. It exhibits fast response, long-term stability, high sensitivity and good selectivity to H2O2. Under optimized conditions, it linearly responds to H2O2 in the concentration range from 1.0?μM to 26?mM, with a detection limit of 0.21?μM (at S/N?=?3).
Figure
A nano-array biosensor for hydrogen peroxide (H2O2) based on the co-electrodeposition of horseradish peroxidase (HRP) and methylene blue (MB) into anodic aluminum oxide template was constructed. The immobilized HRP could maintain natural bioactivity and MB could efficiently shuttle electrons between HRP and the electrode.  相似文献   

14.
The performance of an enzyme sensor fabricated through covalent bond formation on the HRP‐bonded poly(1,8‐diaminonaphthalene) (polyDAN) layer with gold nanoparticles (AuNPs) was applied to catalyze the electrochemical reduction of H2O2. The surface characteristics of the sensor probe were studied using cyclic voltammetry, SEM, XPS, QCM, and impedance spectroscopy. The AuNP‐deposited surface resulted in higher conductivity and sensitivity for H2O2 detection in phosphate buffer solution. A linear calibration plot was obtained in the H2O2 concentration range between 10.0 μM and 25.0 mM with detection limit 5.0±1.25 μM. The lifetime of HRP/polyDAN/AuNP/GC probe was over 70 days without response loss.  相似文献   

15.
Electrochemical detection of H2 using scanning electrochemical microscopy (SECM) has shown to hold great promise as a sensitive characterization method with high spatial resolution for active surfaces generating H2. Herein, the factors contributing to the current that is measured by SECM in generation/collection mode for H2 detection are studied. In particular, the concentration gradient of H2 at the substrate, the H2/H+ recycling between the SECM tip and substrate and hemispherical profile of H2 diffusion has been discussed. It was postulated that H2/H+ recycling plays a dominant role in the oxidative current measured in generation/collection mode of SECM when the microelectrode is positioned in close vicinity of substrate. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A novel protocol for immobilization of horseradish peroxidase (HRP) onto diazonium functionalized screen‐printed gold electrode (SPGE) has been successfully developed. This protocol involved 1) electrochemical reduction of p‐nitrophenyl diazonium salts synthesized in situ in acidic aqueous solution to graft a layer of p‐nitrophenyl on SPGE, 2) electrochemical reduction of the nitro groups to convert to amines, 3) chemical reaction with nitrous acid to transform the amine to diazonium derivative and 4) chemical coupling of the enzyme with the diazonium group to form a covalent diazo bond. The fabricated biosensor showed the direct electrochemistry of HRP and displayed electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) without any mediator. The biosensor exhibited fast amperometric response to H2O2. The catalytic current increased with increasing H2O2 concentration from 5 μM to 30 μM and the detection limit of the biosensor was 2 μM. The biosensor exhibited acceptable sensitivity, good reproducibility and long‐term stability.  相似文献   

17.
The two-electron and two-proton p-hydroquinone/p-benzoquinone (H2Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH)m. The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH)m + nAH + e ⇌ [HQ(AH)(m+n)−1(A)]2−), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O2). The Mn electrocatalyst is selective for H2O2 with only TFEOH and O2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H2Q(AH)3(A)2]2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H2O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H2Q.

Non-covalent interactions between reduced p-benzoquinone species and weak acids stabilize intermediates which can switch dioxygen reduction selectivity from H2O2 to H2O for a molecular Mn catalyst.  相似文献   

18.
Layered nanocomposite of methylene blue (MB)-intercalated vanadium oxide was obtained through a simple hydrothermal synthesis method using MB, V2O5, and NaI as starting materials. The intercalation reaction was proven to be successful using X-ray diffraction pattern. The MB-V2O5 nanocomposite was characterized using a scanning electron micrograph, infrared spectra, thermogravimetric analysis, UV spectra, and electrochemical measurements. The intercalated MB cations showed a fine diffusion-controlled electrochemical redox process and facilitated the immobilized horseradish peroxidase’s (HRP) good catalytic reduction upon H2O2. The as-prepared MB-V2O5/HRP biosensor showed a linear response to H2O2 over a range from 2.0?×?10?6 to 9.5?×?10?5 M with a detection limit of 9.7?×?10?7 M (S/N ratio?=?3).  相似文献   

19.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

20.
The fluorescence intensity of 5(6)-carboxyfluorescein (CF) was decreased by addition of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The reaction inside a liposome containing CF and HRP on addition of H2O2 was measured fluorometrically after destruction of the liposome with Triton X-100. The reaction efficiency was higher than that without liposome because CF and HRP were concentrated inside the latter. The determination of H2O2 can be performed with a smaller amount of HRP by liposome encapsulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号