首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer stem cells (CSCs) are resistant to chemo- and radio-therapy, and can survive to regenerate new tumors. This is an important reason why various anti- cancer therapies often fail to completely control tumors, although they kill and eliminate the bulk of cancer cells. In this study, we determined whether or not adenine nucleotide translocator-2 (ANT2) suppression could also be effective in inducing cell death of breast cancer stem-like cells. A sub-population (SP; CD44+/ CD24-) of breast cancer cells has been reported to have stem/progenitor cell properties. We utilized the adeno- ANT2 shRNA virus to inhibit ANT2 expression and then observed the treatment effect in a SP of breast cancer cell line. In this study, MCF7, MDA-MB-231 cells, and breast epithelial cells (MCF10A) mesenchymally-transdifferentiated through E-cadherin knockdown were used. ANT2 expression was high in both stem-like cells and non-stem-like cells of MCF7 and MDA-MB-231 cells, and was induced and up-regulated by mesenchymal transdifferentiation in MCF10A cells (MCF10A(EMT)). Knockdown of ANT2 by adeno-shRNA virus efficiently induced apoptotic cell death in the stem-like cells of MCF7 and MDA-MB-231 cells, and MCF10A(EMT). Stem-like cells of MCF7 and MDA-MB-231, and MCF10A(EMT) cells exhibited increased drug (doxorubicin) resistance, and expressed a multi-drug resistant related molecule, ABCG2, at a high level. Adeno-ANT2 shRNA virus markedly sensitized the stem-like cells of MCF7 and MDA-MB-231, and the MCF10A(EMT) cells to doxorubicin, which was accompanied by down-regulation of ABCG2. Our results suggest that ANT2 suppression by adeno-shRNA virus is an effective strategy to induce cell death and increase the chemosensitivity of stem-like cells in breast cancer.  相似文献   

2.
Scientific evidence supports the early deregulation of epigenetic profiles during breast carcinogenesis. Research shows that cellular transformation, carcinogenesis, and stemness maintenance are regulated by epigenetic-specific changes that involve microRNAs (miRNAs). Dietary bioactive compounds such as blueberry polyphenols may modulate susceptibility to breast cancer by the modulation of CSC survival and self-renewal pathways through the epigenetic mechanism, including the regulation of miRNA expression. Therefore, the current study aimed to assay the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on the modulation of miRNA signature and the target proteins associated with different clinical-pathological characteristics of breast cancer such as stemness, invasion, and chemoresistance using breast cancer cell lines. To this end, 4T1 and MB-MDM-231 cell lines were exposed to NBJ or PEBP for 24 h. miRNA profiling was performed in breast cancer cell cultures, and RT-qPCR was undertaken to assay the expression of target miRNA. The expression of target proteins was examined by Western blotting. Profiling of miRNA revealed that several miRNAs associated with different clinical-pathological characteristics were differentially expressed in cells treated with PEBP. The validation study showed significant downregulation of oncogenic miR-210 expression in both 4T1 and MDA-MB-231 cells exposed to PEBP. In addition, expression of tumor suppressor miR-145 was significantly increased in both cell lines treated with PEBP. Western blot analysis showed a significant increase in the relative expression of FOXO1 in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Furthermore, a significant decrease was observed in the relative expression of N-RAS in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Our data indicate a potential chemoprevention role of PEBP through the modulation of miRNA expression, particularly miR-210 and miR-145, and protection against breast cancer development and progression. Thus, PEBP may represent a source for novel chemopreventative agents against breast cancer.  相似文献   

3.
4.
Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7–9 expression and downregulation of Bcl-2 and full-length caspase-7–9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.  相似文献   

5.
Aiming to find Amaryllidaceae alkaloids against breast cancer, including the highly aggressive triple-negative breast cancer, the phytochemical study of Pancratium maritimum was carried out. Several Amaryllidaceae-type alkaloids, bearing scaffolds of the haemanthamine-, homolycorine-, lycorine-, galanthamine-, and tazettine-type were isolated (3–11), along with one alkamide (2) and a phenolic compound (1). The antiproliferative effect of compounds (1–11) was evaluated by the sulforhodamine B assay against triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, breast cancer cells MCF-7, and the non-malignant fibroblast (HFF-1) and breast (MCF12A) cell lines. The alkaloids 3, 5, 7, and 11 showed significant growth inhibitory effects against all breast cancer cell lines, with IC50 (half-maximal inhibitory concentration) values ranging from 0.73 to 16.3 µM. The homolycorine-type alkaloid 7 was selected for further investigation in MDA-MB-231 cells. In the annexin-V assay, compound 7 increased cell death by apoptosis, which was substantiated, in western blot analyses, by the increased expression of the pro-apoptotic protein Bax, and the decreased expression of the anti-apoptotic protein Bcl-xL. Consistently, it further stimulated mitochondrial reactive oxygen species (ROS) generation. The antiproliferative effect of compound 7 was also associated with G2/M cell cycle arrest, which was supported by an increase in the p21 protein expression levels. In MDA-MB-231 cells, compound 7 also exhibited synergistic effects with conventional chemotherapeutic drugs such as etoposide.  相似文献   

6.
In spite of the importance of phospholipase D (PLD) in cell proliferation and tumorigenesis, little is known about the molecules regulating PLD expression. Thus, identification of small molecules inhibiting PLD expression would be an important advance for PLD-mediated physiology. We examined one such here, denoted "Triptolide", which was identified in a chemical screen for inhibitors of PLD expression using cell assay system based on measurement of PLD promoter activity. Triptolide significantly suppressed the expression of both PLD1 and PLD2 with sub-µM potency in MDA-MB-231 breast cancer cells as analyzed by promoter assay and RT-PCR. Moreover, triptolide abolished the protein level of PLD in a time and dose-dependent manner. Triptolide-induced PLD1 downregulation was also observed in all the cancer cells examined, suggesting a general phenomenon detected in various cancer cells. Decrease of PLD expression by triptolide suppressed both basal and PMA-induced PLD activity. In addition, triptolide inhibited activation of NFκB which increased PLD1 expression. Ultimately, downregulation of PLD by triptolide inhibited proliferation of breast cancer cells. Taken together, we demonstrate that triptolide suppresses the expression of PLD via inhibition of NFκB activation and then decreases cell proliferation.  相似文献   

7.
Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.  相似文献   

8.
Based on the results of previous work, we designed and synthesized 1,3,4-thiadiazole derivatives. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and a normal cell line (fibroblasts). The results showed that all compounds displayed weak anticancer activity towards two breast cancer lines: an estrogen-dependent cell line (MCF-7) and an estrogen-independent cell line (MDA-MB-231). The compound most active towards MCF-7 breast cancer cells was SCT-4, which decreased DNA biosynthesis to 70% ± 3 at 100 µM. The mechanism of the anticancer action of 1,3,4-thiadiazole was also investigated. We choose a set of the most investigated proteins, which are attractive anticancer targets. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds but the most likely mechanism of action for the new compounds is connected with the activity of caspase 8.  相似文献   

9.
10.
Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1β (IL-1β)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1β-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1β significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1β treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1β-induced COX-2 upregulation. However, suppression of protein kinase C δ (PKC δ) expression by siRNA or overexpression of dominant-negative PKC δ (DN-PKC-δ) did not abrogate the rottlerin plus IL-1β-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-α (TNF-α), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1β-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells.  相似文献   

11.
Aptamer-functionalized silver nanoclusters(Ag NCs) have been attracting a lot of interest as label-free probes which have been successfully applied to both cell imaging and molecular detection.MUCl aptamer is an ssDNA aptamer that specifically binds to MUCl mucin which is a large transmembrane glycoprotein whose expression level increases at least 10-fold in primary and metastatic breast cancers.Using C4A4C3-linker-MUCl as template,the Ag NCs were synthesized through one-pot process.The fluorescence intensity of Ag NCs was found to be closely related to the length and type(poly adenine or thymine) of the linker,the optimum linker being-AAAAA-.Using the C4A4C3-A5-MUC1 as the scaffold,the synthesized Ag NCs emitted fluorescence with high quantum yield(QY) of 66.5%.Based on the specific interaction between the MUCl aptamer and MUCl mucin,the C4A4C3-A5-MUC1-stabilized Ag NCs could recognize and differentiate the MCF-7 breast cancer cells from MDA-MB-231 breast cancer and A549 human lung cancer cells.  相似文献   

12.
The detection and identification of epidermal growth factor receptor 2 (HER2)-positive breast cancer cells is crucial for the clinic therapy of breast cancer. For the aim of the detection, a novel surface-enhanced Raman scattering (SERS) probe for distinguishing breast cancers at different HER2 statuses is reported in this paper. In such a probe, anti-HER2 antibody-conjugated silver nanoparticles have been synthesized for specific targeting of HER2-positive breast cancer cells. More importantly, different from the previously reported SERS probe for targeting cancer cells, p-mercaptobenzoic acid is utilized as both the Raman reporter and the conjugation agent for attaching antibody molecules, which leads to a much simplified structure. For investigating the ability of such a probe to distinguish breast cancer cells, SKBR3 and MCF7 cells were chosen as two model systems, which are HER2-positive- and HER2-negative-expressing cells, respectively. The experimental results reveal that SKBR3 cells exhibit much stronger SERS signals than MCF7 cells, indicating that the probe could be utilized to distinguish breast cancer cells at different HER2 statuses. This kind of SERS probe holds a potential for a direct detection of living breast cancer cells with the advantages of easy fabrication, high SERS sensitivity, and biocompatibility.  相似文献   

13.
For cancer gene therapy, cancer-specific over- expression of a therapeutic gene is required to reduce side effects derived from expression of the gene in normal cells. To develop such an expression vector, we searched for genes over-expressed and/or specifically expressed in cancer cells using bioinformatics and have selected genes coding for protein regulator of cytokinesis 1 (PRC1) and ribonuclease reductase 2 (RRM2) as candidates. Their cancer-specific expressions were confirmed in both breast cancer cell lines and patient tissues. We compared each promoter's cancer-specific activity in the breast normal and cancer cell lines using the luciferase gene as a reporter and confirmed cancer-specific expression of both PRC1 and RRM2 promoters. To test activities of these promoters in viral vectors, the promoters were also cloned into an adeno-associated viral (AAV) vector containing green fluorescence protein (GFP) as the reporter. The GFP expression levels by these promoters were various depending on cell lines tested and, in MDA-MB-231 cells, GFP activities derived from the PRC1 and RRM2 promoters were as strong as that from the cytomegalovirus (CMV) promoter. Our result showed that a vector containing the PRC1 or RRM2 promoter could be used for breast cancer specific overexpression in gene therapy.  相似文献   

14.
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.  相似文献   

15.
Cell migration and invasion are critical steps in cancer metastasis, which are the major cause of death in cancer patients. Tumor-associated macrophages(TAMs) and interstitial flow(IF) are two important biochemical and biomechanical cues in tumor microenvironment, play essential roles in tumor progression. However, their combined effects on tumor cell migration and invasion as well as molecular mechanism remains largely unknown. In this work, we developed a microfluidic-based 3 D breast cancer model by co-culturing tumor aggregates, macrophages, monocytes and endothelial cells within 3 D extracellular matrix in the presence of IF to study tumor cell migration and invasion. On the established platform, we can precisely control the parameters related to tumor microenvironment and observe cellular responses and interactions in real-time. When co-culture of U937 with human umbilical vein endothelial cells(HUVECs) or MDA-MB-231 cells and tri-culture of U937 with HUVECs and MDA-MB-231 cells, we found that mesenchymal-like MDA-MB-231 aggregates activated the monocytes to TAM-like phenotype macrophages. MDA-MB-231 cells and IF simultaneously enhanced the macrophages activation by the stimulation of colony-stimulating factor 1(CSF-1). The activated macrophages and IF further promoted vascular sprouting via vascular endothelial growth factor(VEGFα) signal and tumor cell invasion. This is the first attempt to study the interaction between macrophages and breast cancer cells under IF condition. Taken together, our results provide a new insight to reveal the important physiological and pathological processes of macrophages-tumor communication. Moreover, our established platform with a more mimetic 3 D breast cancer model has the potential for drug screening with more accurate results.  相似文献   

16.
Abstract

This study aims to isolate the potential antiproliferative and cytotoxic compounds from ginkgo biloba sarcotestas (GBS) and investigates the underlying mechanism in human MDA-MB-231 and mouse 4T-1 triple-negative breast cancer cells. Our results showed that 2-Hydroxy-6-tridecylbenzoic acid was isolated by cytotoxicity-guided fractionation where different fractions were assessed using MTT assay against MDA-MB-231 and 4T-1 cells. Colony formation assay showed that 2-Hydroxy-6-tridecylbenzoic acid significantly inhibited cell proliferation. The inhibition was associated with the enhancement of cytochrome P450 (CYP) 1B1 expression in a dose- and time-dependent manner and no significant change of CYP1A1 expression by qPCR and Western blot assays in MDA-MB-231 and 4T-1 cells. The mechanism was further demonstrated by the activation of aryl hydrocarbon receptor (AhR) pathway with the upregulation of AhR, AhR nuclear translocator (ARNT) and AhR-dependent xenobiotic response elements (XRE) activity. These findings may have implications for development of anticancer agents containing 2-Hydroxy-6-tridecylbenzoic acid as functional additives.  相似文献   

17.
Mitochondrion is one of the most important organelles in cells with several vital responsibilities. The consequence of a deficiency in the function of mitochondrion could result with the wide range of diseases and disorders. In this study, we investigated the feasibility of utilizing surface-enhanced Raman scattering (SERS) to understand the mode of interaction of gold nanoparticles (GNPs) with mitochondria. The living lung cancer cells and the isolated mitochondria from these cells were treated with gold colloidal suspension for SERS experiments. The AFM images of the mitochondria confirmed that the treatment did not cause substantial damage to mitochondria. The localization of GNPs in living cells is investigated with confocal microscopy and found that GNPs form aggregates in the cytosol away from the mitochondria. However, SERS spectra obtained from isolated mitochondria and living cells indicate that GNPs escaped from the endosomes or entered into the living cell through another route may be in contact with mitochondria in a living cell. The findings of this study indicate that SERS can be used for mitochondrial research.  相似文献   

18.
Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.  相似文献   

19.
In this study, we aimed to evaluate the anticancer effect of benzimidazole derivatives on triple-negative breast cancer (TNBC) and investigate its underlying mechanism of action. Several types of cancer and normal breast cells including MDA-MB-231, radiotherapy-resistant (RT-R) MDA-MB-231, and allograft mice were treated with six benzimidazole derivatives including mebendazole (MBZ). Cells were analyzed for viability, colony formation, scratch wound healing, Matrigel invasion, cell cycle, tubulin polymerization, and protein expression by using Western blotting. In mice, liver and kidney toxicity, changes in body weight and tumor volume, and incidence of lung metastasis were analyzed. Our study showed that MBZ significantly induced DNA damage, cell cycle arrest, and downregulation of cancer stem cell markers CD44 and OCT3/4, and cancer progression-related ESM-1 protein expression in TNBC and RT-R-TNBC cells. In conclusion, MBZ has the potential to be an effective anticancer agent that can overcome treatment resistance in TNBC.  相似文献   

20.
Abstract

Gypensapogenin H (Gyp H) is a novel dammarane-type triterpene, isolated from hydrolyzate of total saponins from Gynostemma pentaphyllum. Our previous work demonstrated that Gyp H exhibited potent growth inhibitory effects on tumor cells. It significantly inhibited the growth of human breast cancer cells (MDA-MB-231), while having low toxicity to normal human breast epithelial cells, MCF-10a. Further mechanistic study demonstrated that Gyp H decreased survival, inhibited proliferation, migration, induced apoptosis and led to cell cycle arrest. For the MDA-MB-231 cell lines, Gyp H increased expression of P21, Bax and cytochrome c, induced PARP cleavage and activated caspases. Gyp H also reduced expression of CDK2/4, CyclinD1, E2F1 and Bcl2, which associated with the cell cycle arrest. Thus, our finding may be useful for understanding the mechanism of action of Gyp H on breast cancer cells and suggest that Gyp H would be a leading agent for the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号