首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiway and multiset data analysis extensions of the multivariate curve resolution alternating least squares (MCR-ALS) method are proposed for the investigation of the temporal distribution of the pollution by nitric oxide (NO) and ozone (O3) in one sampling station in the urban centre of Barcelona (Catalonia, Spain), during the years 2000–2006. Different specific studies were performed considering the annual and pluriannual contamination by these two contaminants, individually or in combination using different data matrix augmentation strategies and multiway and multiset data analysis models. Daily, hourly and annual profiles were estimated describing different patterns and summarising the main contamination processes. The daily and night trends found were mainly attributed to traffic and photochemical processes favoured by light radiation. Moreover, winter–summer seasonal trends were also clearly detected and their changes over different years assessed. The extension MCR-ALS method to multiset data analysis using different constraints like non-negativity, trilinearity and interaction among components is confirmed to be a powerful method to improve the interpretability of the different contamination patterns in atmospheric contamination studies.  相似文献   

2.
3.
A predictive mathematical model to describe mass loss profiles of flame-retardant (FR) containing epoxy resin formulations is proposed. Mass loss is due to thermal degradation of the constituent components and can be described by a generic kinetic scheme with a given set of thermokinetic constants in the form of ordinary differential equations. The scope of this work is to determine the kinetic parameters of the thermal degradation of a known flame-retarded epoxy resin composition by using thermogravimetric analysis and using the acquired data to predict the degradation profiles for other formulations. The mass loss profiles of Visil and intumescent epoxy resin containing formulations were predicted by solving coupled systems of ordinary differential equations and then using Powell minimisation to find the optimal Arrhenius parameters, taking into account the mass ratio of the components in the mixture. The calculated kinetic constants for one formulation (85% resin-15% FR additives) are used to predict the mass loss profiles for other formulations (80% resin-20% FR additives and 90% resin-10% FR additives) with the assumption that the degradation mechanism does not change. The predicted thermal degradation profiles are compared with experimental data acquired using standard laboratory equipment in order to validate the proposed mechanisms. The kinetic parameters obtained adequately describe mass loss history of composite materials studied, even when extremely simplified kinetic schemes have been used.  相似文献   

4.
The kinetics and mechanism of the thermal degradation of thiol-terminated liquid polysulphide polymer cured with ammonium dichromate was studied by pyrolysis-gas chromatography and isothermal and dynamic thermogravimetry. Pyrolysis-gas chromatography showed that the nature and composition of the pyrolysates for the liquid and the cured elastomers were essentially the same. Isothermal measurements were made at 268, 280, 290 and 299°C and maxima in the rates of degradation occurred at 28% conversion (α). Isothermal rates calculated from a kinetic model based on random initiation followed by rapid termination by disproportionation were in good agreement with the experimental values. The dynamic experiments were run at several heating rates from 2 to 100°C/min. Analysis of the data based on the random initiation model gave kinetic parameters that agreed well with the isothermal values and with the values obtained by Ozawa's method, confirming the proposed kinetic model for the degradation. The overall activation energy for the degradation (Ed) was found to be 146.4, 144.1±7.6 and 145.6±7.6 kJ mole−1 by isothermal, dynamic and Ozawa's methods, respectively. The Coats-Redfern method of analysis gave increasing values of Ed with increasing heating rates and showed a kinetic compensation effect.  相似文献   

5.
Combined kinetic analysis has been applied for the first time to the thermal degradation of polymeric materials. The combined kinetic analysis allows the determination of the kinetic parameters from the simultaneous analysis of a set of experimental curves recorded under any thermal schedule. The method does not make any assumptions about the kinetic model or activation energy and allows analysis even when the process does not follow one of the ideal kinetic models already proposed in the literature. In the present paper the kinetics of the thermal degradation of both polytetrafluoroethylene (PTFE) and polyethylene (PE) have been analysed. It has been concluded, without previous assumptions on the kinetic model, that the thermal degradation of PTFE obeys a first order kinetic law, while the thermal degradation of PE follows a diffusion-controlled kinetic model.  相似文献   

6.
A novel method for determination of carbaryl in effluent was proposed in this study. The kinetic evolution of excitation-emission matrix fluorescence (EEM) for the pesticide were recorded and come into being a four-way data array. The four-way fluorescence data were analyzed using the parallel factor analysis (PARAFAC). The methodology exploits the second-order advantage of three-order calibration based on quadrilinear parallel factor analysis, allowing analyte concentrations to be estimated even in the presence of an uncalibrated fluorescent background. It gave the satisfactory results for determination of the carbaryl in effluent samples. In addition, the kinetic study of degradation of carbaryl was performed according to the kinetic profile provided by the calibration.  相似文献   

7.
The thermal degradation behavior of a range of ethylene-propylene-diene (EPDM) elastomers, covering the whole range of composition, has been examined under isothermal conditions between 410 and 440 °C using thermogravimetric analysis. The kinetic parameters of degradation for the polymers have been evaluated using different mathematical models based on different proposed mechanisms of degradation. The experimental data were fitted to the models using non-linear regression analysis technique based on Marquardt-Levenberg algorithm. It appears that the degradation of EPDMs follows the Avrami-Erofeev two-dimensional nucleation model or a random chain-scission mechanism. No observable trend was found between the ethylene content of EPDM and the activation energy of degradation.  相似文献   

8.
The kinetic analysis of the degradation of polystyrene (PS) in supercritical acetone has been studied using the nonisothermal weight loss technique with heating rates of 3, 5 and 7 °C/min. The weight loss data according to degradation temperature have been analyzed using the integral method based on Arrhenius form to obtain the kinetic parameters such as apparent activation energy and overall reaction order. The kinetic parameters obtained from this work were also compared with those of the thermal degradation of PS in nitrogen atmosphere. From this work, it was found that the activation energies of PS degradation in supercritical acetone were 73.3-200.7 kJ/mol and lower than those of the thermal degradation in nitrogen atmosphere.  相似文献   

9.
速率常数-秩分析法在化学反应过程分析中的应用   总被引:1,自引:0,他引:1  
针对化学反应动力学谱-吸收光谱组成的两维数据,提出了以优化速率常数而消去反应物波谱信息为减秩手段的速率常数-秩分析法(RCRA).结果表明,RCRA在一次优化过程中可同时获得两个最优解,分别对应于两步速率常数.在获得动力学参数的前提下,利用最小二乘回归可解出包括中间体在内的各组分的吸收光谱.该方法用于处理苯胺电解降解的两维数据,发现苯胺降解过程中有一种表观中间体存在,降解过程符合一级连串反应模型.  相似文献   

10.
Summary: An amorphous grade Poly (lactic acid) (PLA) was selected for an accelerated burial in soil test during 450 days. Thermogravimetric analyses were carried out to study the effects of degradation in soil on the thermal stability and the thermal decomposition kinetics. A single stage decomposition process is observed for all degradation times. It is shown that the thermal stability of PLA is slightly affected by degradation in soil. Concerning the study of the thermal decomposition kinetics, Criado master curves were plotted from experimental data to focus the study of the thermodegradation kinetic model.The kinetic methods proposed by Broido and Chang were used to calculate the apparent activation energies (Ea) of the degradation mechanism. These results were compared to the Ea values obtained by the method developed by Coats and Redfern in order to prove the applicability of the former methods to the kinetic study. As expected, non-linear tendency is found out for Ea variation along the degradation times, which can be explained as an evolution by stages.  相似文献   

11.
In this paper, a series of f(α) kinetic equations able to describe the random scission degradation of polymers is formulated in such a way that the reaction rate of the thermal degradation of polymers that go through a random scission mechanism can be directly related to the reacted fraction. The proposed equations are validated by a study of the thermal degradation of poly(butylene terephthalate) (PBT). The combined kinetic analysis of thermal degradation curves of this polymer obtained under different thermal pathways have shown that the proposed equation fits all these curves while other conventional models used in literature do not.  相似文献   

12.
《印度化学会志》2021,98(6):100077
Thermogravimetric Analysis (TGA) is concluding expanding applicability in determination of the thermal stability and degradation nature of materials. The present study investigates the thermal degradation behavior and the kinetics of degradation of epoxy mixed with varying percentages of 0, 2.5, 5, and 7.5 ​wt% fly ash. Thermal stability and degradation behavior of fly ash modified epoxy cast were determined by thermogravimetric analysis. The kinetic parameters of the EF composites were calculated by using Coats–Redfern, Broido and Horowitz–Metzger models under best-fit analysis and further proved by linear regression analysis. The kinetics of thermal degradation was calculated from data scanned at a heating rate of 10 ​°C/min. The obtained results reveal that kinetic parameters and thermal behavior of EF composites were improved with the reinforcement of fly ash. The cure kinetics of the varying content of fly ash reinforced epoxy cast were also studied by using a nonisothermal differential scanning calorimetric (DSC) technique at four different heating rates 5 ​°C/min, 10 ​°C/min, 15 ​°C/min and 20 ​°C/min. The curing kinetics of the EF composite was derived from the nonisothermal differential scanning calorimetry (DSC) data with the three Kissinger, Ozawa, and Flynn–Wall–Ozawa models, respectively.  相似文献   

13.
This paper explores the relationship between the shapes of temperature-time curves obtained from experimental data recorded by means of constant rate thermal analysis (CRTA) and the kinetic model followed by the thermal degradation reaction. A detailed shape analysis of CRTA curves has been performed as a function of the most common kinetic models. The analysis has been validated with simulated data, and with experimental data recorded from the thermal degradation of polytetrafluoroethylene (PTFE), poly(1,4-butylene terephthalate) (PBT), polyethylene (PE) and poly(vinyl chloride) (PVC). The resulting temperature-time profiles indicate that the studied polymers decompose through phase boundary, random scission, diffusion and nucleation mechanisms respectively. The results here presented demonstrate that the strong dependence of the temperature-time profile on the reaction mechanism would allow the real kinetic model obeyed by a reaction to be discerned from a single CRTA curve.  相似文献   

14.
The analysis of UV‐spectrophotometric data with second‐order chemometrics techniques, including multivariate curve resolution with alternating least‐squares (MCR‐ALS) and hybrid hard‐ and soft MCR (HS‐MCR), was examined as an alternative tool for studying the kinetics of drug degradation under stress conditions, employing valsartan (VAL) as a model drug. Despite small structural and spectroscopic differences between VAL and its degradation products, MCR‐ALS and HS‐MCR were able to detect the generation of two photoneutral degradation products (DP‐1 and DP‐2) and a single acid hydrolysis product (DP‐3), providing good approximations to their pure spectra and concentration profiles, from which estimations of the kinetic profiles and rate constants were obtained. Kinetic models based on first‐order reactions explained the degradation processes. MCR‐ALS and HS‐MCR analyses yielded similar rate constants; however, the latter was capable of more properly fitting the experimental data to a kinetic model in the case of drug photolysis. The results were confirmed by comparison with data obtained by HPLC analysis of the degraded samples.  相似文献   

15.
Mas S  Carbó A  Lacorte S  de Juan A  Tauler R 《Talanta》2011,83(4):1134-1146
A general procedure for the study of complex photodegradation processes of environmental pollutants based on chromatographic monitoring and chemometric method is proposed. The procedure consists of multiset data analysis of aliquots collected at different reaction times and injected in High-Performance Liquid Chromatography coupled to diode array detection and mass spectrometry (HPLC-DAD-MS). In this study, photodegradation of six bromophenols with different degrees of bromination has been investigated in order to find out their photodegradation pathways and kinetics and to show the potential of the procedure proposed. Multivariate curve resolution-alternating least squares (MCR-ALS) has been used to resolve chromatographic elution profiles and pure spectra of species involved in the photodegradation process and, hence, to elucidate the photodegradation mechanism and to propose the chemical structure of the main photoproducts. This study shows that chromatographic monitoring is the preferred option when photochemical systems with large number of components with similar spectra and kinetic evolution are analyzed. This work reveals the advantages of the double DAD and MS detection to provide mechanistic and structural information about these complex photodegradation processes.  相似文献   

16.
The photo-oxidative degradation of a densely cross-linked epoxide/diamine network based on tetraglycidyl-4,4′ diaminodiphenylmethane (TGDDM) and 4,4′ diaminodiphenyl sulphone (DDS) has been investigated by FTIR spectroscopy, dynamic-mechanical analysis (DMA) and compressive mechanical tests. The FTIR measurements allowed us to monitor the degradation process of the different groups present in the TGDDM/DDS network and to obtain reliable kinetic data. On this basis the most likely photo-degradation mechanisms were proposed. Dynamic-mechanical measurements and mechanical compressive tests were used to gain an insight in the effect of the photo-oxidative degradation on the relaxation processes of the epoxy network and on the mechanical performances.  相似文献   

17.
Thermal degradation of wood treated with flame retardants   总被引:2,自引:0,他引:2  
Wood, one of the most flammable materials, was treated with various compounds containing nitrogen, phosphorus, halogens, and boron. For a study of flame retardance from the standpoint of thermal degradation, the samples were subjected to thermogravimetry (TG), differential thermal analysis (DTA) and differential thermogravimetry (DTG) in nitrogen to determine if there were any characteristic correlations between thermal degradation behaviors and the level of flame retardance. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained using the method of Broido. The energies of activation for the decomposition of samples are found to be from 72 to 109 kJ mol–1. For wood and modified wood, the char yields are found to increase from 10.2 to 30.2%, LOI from 18 to 36.5, which indicates that the flame retardance of wood treated with compounds is improved. The flame retardant mechanism of different compounds has also been proposed.  相似文献   

18.
Jia Li  Wei Zheng  Li Li  Yufeng Zheng  X. Lou   《Thermochimica Acta》2009,493(1-2):90-95
Thermal degradation behaviors of a composite constituted by poly(l-lactide) (PLA) and hydroxyapatite nanoparticle that was surface-grafted with l-lactic acid oligomer (g-HA) in a nitrogen atmosphere were studied using thermogravimetric analysis (TGA) and compared with PLA. The kinetic models and parameters of the thermal degradation of PLA and the g-HA/PLA composite were evaluated by the invariant kinetic parameters (IKP) method and Flynn–Wall–Ozawa (FWO) method based on a set of TGA data obtained at different heating rates. It was shown that the conversion functions calculated by means of the IKP method depend on a set of kinetic models. The g-HA particle slowed down the thermal degradation of PLA polymer matrix.  相似文献   

19.
The thermal degradation of poly(3-hydroxybutyrate) (PHB) was investigated by kinetic analyses in detail to clarify its complex degradation behavior, resulting in a finding of mixed mechanisms comprising at least a thermal random degradation with subsequent auto-accelerated transesterification, and a kinetically favored chain reaction from crotonate chain ends. The thermal degradation behavior of PHB varied with changes in time and/or temperature. From the kinetic analysis of changes in molecular weight, it was found that a non-auto-catalytic random degradation proceeding in the initial period was followed by an auto-accelerated reaction in the middle period. From the kinetic analysis of weight loss behavior, it is proposed that there are some kinetically favored scissions occurring at the chain ends, where the degradation proceeded by a 0th-order weight loss process in the middle stage. The observed 0th-order weight loss process was assumed to be an unzipping reaction occurring at ester groups neighboring the crotonate end groups.  相似文献   

20.
Polylactide (PLA)-montmorillonite (MMT) micro- and nanocomposites based on semicrystalline and amorphous polymers and unmodified or organomodified clays at 5 wt% content were produced by melt mixing. Based on the three different test methods that were used to follow thermal degradation, different conclusions were obtained. During melt processing, thermomechanical degradation was more pronounced in the presence of all fillers, which apparently acted catalytically, but to different degrees. During isothermal degradation in air from 180 °C to 200 °C, degradation rate constants were calculated from novel equations incorporating changes in intrinsic viscosity (IV). Results show that the thermal degradation rate constants of the amorphous PLA and its composites are lower than those of the semicrystalline PLA and its composites. Due to better filler dispersion in the polymer matrix, the thermal degradation rate constants of the nanocomposites are significantly lower than those of the unfilled polymers and their microcomposites under air. As per dynamic TGA data and thermal kinetic analysis from weight losses and activation energy calculations, organomodified nanofillers have a complex effect on the polymer thermal stability; the unmodified fillers, however, reduce polymer thermal stability. These TGA data and kinetic analysis results also support the findings that the thermal stability of the amorphous PLA and its composites is higher than that of the semicrystalline polymer and its composites and the thermal stability of the nanocomposites is higher than that of the microcomposites. In general, mathematical modeling based on random thermal scission equations was satisfactory for fitting the TGA experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号