首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Data precision in the analysis by purge-and-trap coupled on-line to gas chromatography–mass spectrometry (P&T-GC–MS) of honey volatiles has been studied by statistical analysis. The contribution of non-random factors to dispersion of quantitative results was proven by comparing several statistical parameters (correlation coefficients, principal component analysis (PCA) eigenvalues and loadings) from both experimental and simulated data. PCA was also useful for grouping volatiles with similar dispersion behaviour; these groups being generally related to compounds with common properties or structural features. The use of area ratios improves data precision for compounds within the same group. Results from this study could be used for a better selection of internal standards in quantitative analysis of volatiles by P&T-GC–MS.  相似文献   

3.
Methods for trace determination of sulphur mustard (HD) and some related cyclic sulphur compounds in soil samples have been developed using headspace-trap in combination with gas chromatography–mass spectrometry (GC–MS). Two quite different types of soil were employed in the method optimisation (sandy loam and silty clay loam). Prior to analysis, water saturated with sodium chloride was added to the samples, at a water to soil ratio of 1:1. A detection limit of 3 ng/g was achieved for HD, while the cyclic sulphur compounds 1,4-thioxane, 1,3-dithiolane and 1,4-dithiane could be detected at 0.2–0.7 ng/g. The methods were validated in the concentration range from the limit of quantification (LOQ) to hundred times LOQ. The within assay precision at fifty times LOQ was 6.9–7.3% relative standard deviation (RSD) for determination of the cyclic sulphur compounds, and 15% RSD for determination of HD. Recoveries were in the range of 43–60% from the two soil types. As the technique requires very little sample preparation, the total time for sample handling and analysis was less than 1 h. The technique was successfully employed for the determination of cyclic sulphur compounds in a sediment sample from an old dumping site for chemical munitions, known to contain HD degradation products.  相似文献   

4.
The alterations produced by microbiological attack on terpenoid resin-based varnishes from panel and canvas paintings have been evaluated using pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS) and gas chromatography–mass spectrometry (GC–MS). The proposed methods include the on-line derivatisation of drying oils and diterpenoid resins using hexamethyldisilazane during pyrolysis and the application of methyl chloroformate as a derivatisation reagent for triterpenoid resins in GC–MS. Two types of specimens, consisting of model oil medium prepared from linseed oil and model spirit varnishes prepared from colophony and mastic resins dissolved in turpentine, have been used as reference materials. For a series of specimens upon which different genera of bacteria and fungi were inoculated and encouraged to grow, analyses indicated that no mechanisms that commonly occur during the attack of enzymes on drying oils and terpenoid biodegraders were observed to occur in the oil medium and varnishes studied. Thus, the degradation pathways observed in the performed trials usually occur as consequence of natural ageing. Specific trials consisting of the application of biocides to uninoculated colophony varnish resulted in the identification of processes that produce undesirable degradation of the varnish due to interactions between the biocide and the varnish components. Finally, the studied biocides—Biotin, New-Des and Nipagine—generally exhibited good inhibiting effects on the microorganisms studied, although some interesting differences were found between them regarding the application method and type of biocide.  相似文献   

5.
Carbon disulfide (CS2), a relevant reduced sulfur compound in air, is well-known for its malodor and its significant effect on global atmospheric chemistry. Therefore, a reliable method for determining CS2 in atmospheric samples has been developed based on solid-phase sampling and gas chromatography–mass spectrometry (GC–MS). Two types of solid-phase sampling supports (Orbo-32 and SKC) and the elution with organic solvents — hexane and toluene — were evaluated for low-volume outdoor sampling. Recovery studies and the standard addition method were carried out to demonstrate the proper determination of CS2 in the absence of the influence of interferences such as ozone, hydrogen sulfide or water — important atmospheric pollutants —. The proposed methodology was validated by performing experiments in a high-volume smog chamber and by comparison with two reference optical methods, Fourier Transform Infrared (FTIR) and Differential Optical Absorption Spectroscopy (DOAS) installed in these facilities. Satisfactory analytical parameters were reported: fast analysis, a correct repeatability of 6 ± 1% and reproducibility of 14 ± 3%, and low detection limits of 0.3–0.9 pg m? 3. Finally, the method was successfully applied to industrial samples near a pulp factory area, where a high correlation between industrial emissions and reported carbon disulfide concentrations were observed.  相似文献   

6.
The analytical performance of three extraction procedures based on cold liquid–liquid extraction using dicloromethane (LLE), solid phase extraction (SPE) using a styrene–divinylbenzene copolymer and headspace solid phase microextraction (SPME) using a carboxen–polydimethylsiloxane coated fibre has been evaluated based on the analysis of 30 representative wine volatile compounds. From the comparison of the three procedures, LLE and SPE showed very good linearity covering a wide range of concentrations of wine volatile compounds, low detection limits, high recovery for most of the volatile compounds under study and higher sensitivity compared to the headspace-SPME procedure. The latter showed in general, poor recovery for polar volatile compounds. Despite some drawbacks associated with the LLE and SPE procedures such as the more tedious sampling treatment and the use of organic solvents, the analytical performance of both procedures showed that they are more adequate for the analysis of wine volatiles.  相似文献   

7.
A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a significant role for the increase of efficiency in the processing of petroleum.  相似文献   

8.
Polycyclic aromatic hydrocarbons (PAHs) from ambient air particulate matter (PM) were analysed by a two-step thermal desorption (TD) injection system integrated to a gas chromatograph–mass spectrometer (GC/MS). The operational variables of the TD method were optimised and the analytical expanded uncertainties were calculated to vary from 8% to 16% over the operative concentration range (40–4000 pg). The performance of the TD method was validated by the analysis of a standard reference material and by comparison of PAH concentrations in PM samples to those obtained by a conventional liquid extraction (LE) method. The TD method reported lower uncertainties than the LE method for the analysis of similar concentrations in air. The TD method also showed advantages for shorter sampling times in comparison to 24 h for source apportionment applications and for reducing losses of more reactive compounds such as benzo[a]pyrene.  相似文献   

9.
Due to the toxicity of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F), efforts are made to quantify their emission into the environment. Typically, this quantification is done using gas chromatography–high-resolution mass spectrometry (GC–HRMS). However, GC–HRMS is extremely expensive and time consuming, and GC–HRMS facilities are overly requested. In order to decrease the workload on GC–HRMS, another alternative is to use an enzyme-linked immunosorbent assay (ELISA) as a semi-quantitative screening tool. One problem of this solution is that ELISA measures the total PCDD/F content of a sample differently than GC–HRMS; a disparity exists between the two techniques. This paper introduces a congener correction factor that adjusts ELISA results for this incompatibility. The importance of the correction factor is explored by examining the congener profiles of 27 different dioxin sources. The congener profiles for many of these sources are such that large incompatibilities in predicted PCDD/F content would likely exist between uncorrected ELISA and GC–HRMS. The effect that the correction factor has on the correlation between ELISA and GC–HRMS for samples from a test site with dioxin-contaminated soils was also examined. The congener profile at this site was such that the inconsistencies between uncorrected ELISA and GC–HRMS results were relatively small. However, application of the congener correction factor still improved the correlation between ELISA and GC–HRMS by 11% when using sample-specific correction factors and by 5% when using an average site-wide correction factor. The findings of this paper suggest that application of the correction factor is necessary to remove incompatibilities between ELISA and GC–HRMS—particularly when the congener profile at a site would lead to incompatibilities that are large.  相似文献   

10.
We have studied the feasibility of fast high-performance liquid chromatography coupled to electrospray ionization mass spectrometry in the selected ion monitoring mode for the quantitative determination of aspartic acid in an aspartate drug. Internal standardization was required, but mass spectrometric detection allowed for very short retention times of approximately 0.5 min for the analyte and the internal standard without chromatographic separation. The analytical system was found stable, as demonstrated by multiple injections giving a coefficient of variation of 4% for the peak area ratio of aspartic acid and glutamic acid. Calibrations were linear between 0.5 ng and 150 ng aspartic acid injected, with accuracies between 99.8% and 102% found for the back-calculated amounts. Investigation of several drug batches gave reasonable results. Therefore, the method appeared feasible for the determination of aspartic acid in an aspartate drug from 0.3 wt% to 100 wt% aspartic acid.Abbreviations CV coefficient of variation - ESI electrospray ionization - HPLC high-performance liquid chromatography - HSGC headspace gas chromatography - KaFi Karl Fischer titration - MS mass spectrometry - MSD mass-selective detector - % m/m percentage by weight - PAR peak area ratio - r2 coefficient of determination - RP reversed-phase - SIM selected ion monitoringThis work was originally presented as a poster at the Conference of the German Society for Mass Spectrometry, 9–12 March 2003, in Münster, Germany  相似文献   

11.
Monoacylglycerols (MAGs) are lipids found in trace amounts in plants and animal tissues. While they are widely used in various industrial applications, accurate determination of the regio-specific distribution is hindered by the lack of stable, commercially available standards. Indeed, unsaturated β-MAG (or Sn-2 MAG) readily undergoes isomerization into α-MAG (acyl chain is attached to the Sn-1 or the Sn-3 position). In the present study, we describe structural elucidation of α- and β-regio-isomers of monopalmitoyl-glycerol (MAG C16:0) as model compounds in their silylated forms using gas chromatography–mass spectrometry (GC–MS) with electronic impact (EI) ionization. MS fragmentation of α-MAG C16:0 is characterized by the loss of methylene(trimethylsilyl)oxonium (103 amu) and the consecutive loss of acyl chain yielding a fragment ion at m/z 205. The fragmentation pattern of β-MAG C16:0 shows a series of diagnostic fragments at m/z 218, 203, 191 and 103 that are not formed from the α-isomer and hereby enable reliable distinction of these regio-isomers. Possible fragmentation scenarios are postulated to explain the formation of these marker ions, which were also applied to characterize the regio-isomer composition of a complex mixture of MAG sample containing n-3 long-chain polyunsaturated fatty acids.  相似文献   

12.
A sensitive and specific method is presented to simultaneously quantify methadone, heroin, cocaine and metabolites in sweat. Drugs were eluted from sweat patches with sodium acetate buffer, followed by SPE and quantification by GC/MS with electron impact ionization and selected ion monitoring. Daily calibration for anhydroecgonine methyl ester, ecgonine methyl ester, cocaine, benzoylecgonine (BE), codeine, morphine, 6-acetylcodeine, 6-acetylmorphine (6AM), heroin (5-1000 ng/patch) and methadone (10-1000 ng/patch) achieved determination coefficients of >0.995, and calibrators quantified to within +/-20% of the target concentrations. Extended calibration curves (1000-10,000 ng/patch) were constructed for methadone, cocaine, BE and 6AM by modifying injection techniques. Within (N = 5) and between-run (N = 20) imprecisions were calculated at six control levels across the dynamic ranges with coefficients of variation of <6.5%. Accuracies at these concentrations were +/-11.9% of target. Heroin hydrolysis during specimen processing was <11%. This novel assay offers effective monitoring of drug exposure during drug treatment, workplace and criminal justice monitoring programs.  相似文献   

13.
14.
Pyrolysis gas chromatography–mass spectrometry (PyGC-MS) was used as a rapid method for the characterization of permanent marker ink. Twenty-four samples of various colours purchased from different manufacturers were characterised. Four main typologies of polymer-binding medium could be distinguished on the basis of the pyrolysis products, and differentiation between permanent markers of different manufacturers could be accomplished. For some permanent marker samples, PyGC-MS analysis allowed pigment identification as well.  相似文献   

15.
A headspace solid-phase microextraction (HS-SPME) method in combination with gas chromatography–mass spectrometry (GC–MS) has been used for extraction and identification of components of the volatile fraction of Provola dei Nebrodi, a typical semi-hard Sicilian cheese. Cheese samples from different producers and at different ripening stages have been examined. The effects of various conditions (e.g. sample volume, sample headspace volume, sample heating temperature, extraction time, etc.) on extraction efficiency were studied in order to optimise the technique. The technique used made it possible to identify 61 components: fatty acids from C2 to C14 and their esters, aldehydes, alcohols, methyl ketones, -lactones, aromatic compounds, hydrocarbons and terpenes. The main components were butanoic, hexanoic and octanoic acids. The linear free fatty acids (FFA) from C2 to C10 were quantified by using the standard addition method. Calibration curves constructed for the FFA spiked into cheese were highly linear with a correlation coefficient R2>0.998. Significant statistical differences (P0.05) were evident for the even-carbon-number fatty acids during ripening.  相似文献   

16.
Phytosterol oxidation products (POPs) have been suggested to exert adverse biological effects similar to, although less severe than, their cholesterol counterparts. For that reason, their analysis in human plasma is highly relevant. Comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOF-MS) has been proven to be an extremely powerful separation technique for the analysis of very low levels of target compounds in complex mixtures including human plasma. Thus, a GC×GC/TOF-MS method was developed and successfully validated for the simultaneous quantification of ten POPs in human plasma. The calibration curves for each compound showed correlation coefficients (R 2) better than 0.99. The detection limits were below 0.1 ng mL−1. The recovery data were between 71.0% and 98.6% (RSDs <10% for all compounds validated). Good results were obtained for within- and between-day repeatability, with most values being below 10%. In addition, non-targeted sterol metabolites were also identified with the method. The concentrations of POPs found in human plasma in the current study are between 0.3 and 4.5 ng mL−1, i.e., 10–100 times lower than the typical values found for cholesterol oxidation products.  相似文献   

17.
Peptide quantification by liquid chromatography–mass spectrometry (LC–MS) combines the high resolving power of reversed-phase (RP) chromatography with the excellent selectivity and sensitivity of mass spectrometric detection. On the basis of comprehensive practical experience in the analysis of small molecules, pharmaceutical research is developing technologies for analysis of a growing number of peptidic drug candidates. This article is a detailed review of procedures based on LC–MS techniques for quantitative determination of peptides. With the focus on pharmaceutical applications several technologies for sample preparation, various aspects of peptide chromatography, important characteristics of ESI–MS, selectivity of MS-detection modes, the large variability of internal standards, and modern instrumentation are discussed. The demand for reliable, robust, sensitive, and accurate methods is discussed using numerous examples from the literature, complemented by experiments and results from our laboratory.  相似文献   

18.
A sample pretreatment method for the determination of 18 chlorophenols (CPs) in aqueous samples by derivatization liquid-phase microextraction (LPME) was investigated using gas chromatography–mass spectrometry. Derivatization reagent was spiked into the extraction solvent to combine derivatization and extraction into one step. High sensitivity of 18 CPs derivatives could be achieved after optimization of several parameters such as extraction solvent, percentage of derivatization reagent, extraction time, pH, and ionic strength. The results from the optimal method showed that calibration ranging from 0.5 to 500 μg L−1 could be achieved with the RSDs between 1.75% and 9.39%, and the limits of detection (LOD) are ranging from 0.01 to 0.12 μg L−1 for the CPs. Moreover, the proposed LPME method was compared with solid-phase microextraction (SPME) coupled with on-fiber derivatization technique. The results suggested that using both methods are quite agreeable. Furthermore, the recoveries of LPME evaluated by spiked environmental samples ranged from 87.9% (3,5-DCP) to 114.7% (2,3,5,6-TeCP), and environmental water samples collected from the Pearl River were analyzed with the optimized LPME method, the concentrations of 18 CPs ranged from 0.0237 μg L−1 (3,5-DCP) to 0.3623 μg L−1 (2,3,6-TCP).  相似文献   

19.
The analytical detection of chlorophenoxycarboxylic-acid-type herbicides (2,4-D, dichloprop, MCPA, etc.) in environmental samples is often a problem in instrumental analysis, as these compounds containing free carboxylic groups require chemical derivatisation prior to gas chromatographic (GC) methods. Nine chlorophenoxy-acid-type herbicide active ingredients have been derivatised successfully with trimethylsilyl N,N-dimethyl carbamate and t-butyldimethylsilyl N,N-dimethyl carbamate by forming their trimethylsilyl (TMS) and t-butyldimethylsilyl (TBDMS) esters, respectively. The detection and determination of the derivatives were performed by capillary gas chromatography–mass spectrometry. The study included determination of retention indices, mass spectral properties and comparison of derivatives produced. The mass spectra of TBDMS derivatives are usually dominated by very characteristic ions [M-57]+ resulting from the cleavage of t-butyl moiety during electron impact (EI) ionisation in the mass spectrometer. Limits of detection were 5 to 100 pg applying GC with EI-MS detection in full scan mode. The method, using SPE sample preparation, was applied for the analysis of 115 ground water and surface water samples collected in Békés County, Hungary in 2009.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号