首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of the present study is the association of natural uranium in seawater with colloidal and suspended-particulate matter was determined. The separation of suspended particulate material (>0.45 µm) and colloidal fraction (as dissolved fractions) in seawater were done by suction and ultra filtration techniques. Seawater samples were collected at 1 km away from the shore and subjected to sequential fractionation in nine stages ranging from 2.7 µm to 1.1 nm. Suspended particulate matter were separated in three different size groups namely >2.7 µm, <2.7–>0.45 µm and <0.45–>0.22 µm by suction filtration using cellulose acetate and nitrate membranes filters. To concentrate the solution with colloidal particles <0.22 µm–1.1 nm (0.5 k Nominal Molecular Weight cut-off Limit {NMWL}), the solution obtained from filtration through <0.22 µm was passed through stirred ultra-filtration cell. The pH and conductivity at different stages of fractionation (dissolved) showed minor variations. The concentration of uranium was measured in suspended and dissolved fractions by using a pulsed nitrogen laser at 337.1 nm. In order to evaluate the role of mineral colloids in various stages of filtration, concentration of calcium, magnesium, potassium were measured by using ion chromatography and atomic absorption spectrometry. The clay mineral at seawater pH (approximately 8) behave as negative ions and provides binding site for the positively charge species of uranium. Among the dissolved fraction, the maximum concentrations of colloidal uranium was observed about 4 times higher than that compared to average concentration of 6.93±3.10 ppb in other fractions. In the case of suspended particulate matter, the concentration of uranium was below detection limits (<1 ppb). The maximum concentration of Ca, Mg and K in the dissolved fraction were in the <1.1 nm fraction, while for suspended particulate matter, the concentration of Ca, Mg and K decreased with the decrease in size and it is highest in the fraction of 0.22 –0.45 µm.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

2.
A total of 44 pairs of airborne particulate matter samples were collected in the intersection of Simprug, Pondok Indah, South Jakarta. Sampling of airborne particulate matter was conducted in July 2008–July 2009 using a Gent stacked filter unit sampler in two size fractions of <2.5 µm (fine) and 2.5–10 µm (coarse). Mass concentrations, black carbon as well as elemental concentrations were investigated as a pre-study in step to the evaluation of air quality in these roadside areas. Black carbon was determined by reflectance and elemental analysis was performed using proton induced X-ray emission, PIXE. The data set of fine particulate matters obtained from the characterization was then analyzed using receptor modeling EPA PMF3 for source apportionment. Source apportionment identified 5 factors, i.e. soil (9.2 %), construction mixed with road dust (20.9 %), motor vehicles (31.5 %), biomass burning mixed with seasalt (30.9 %), and industry (7.5 %). Motor vehicles is the dominant sources that contributes to the fine particulate matter in Jakarta.  相似文献   

3.
The feasibility of using two different microwave-based sample preparation methods was investigated to determine the total and water-soluble trace metal fraction in airborne particulate matter. The extraction techniques were then applied to urban particulate matter of different sizes in order to evaluate their bioavailability of associated trace metals. While a combination of HNO3-HF-H2O2 was used for the total trace metal fraction of particulate matter, water was employed for the microwave-assisted extraction of water-soluble trace metal fractions. Inductively coupled plasma-mass spectrometry (ICP-MS) was used for the analysis of trace elements. The experimental protocol for the microwave assisted digestion was established using two different SRMs (1648, urban particulate matter and 1649a, urban dust). In the case of water-soluble trace metal fraction, the quantities extracted from the SRMs were compared between ultrasonic and microwave-assisted extractions, and there was a good agreement between the two extraction methods. Blanks values and limits of detection (LODs) for total and water-soluble trace metal concentrations were determined for three different filter substrates (Teflon, Zeflour, and Quartz). Subsequently, the proposed digestion method was evaluated for its extraction efficiency with these filter substrates. Finally, the real-world application of the proposed microwave-based sample preparation methods was demonstrated by analyzing trace elements in airborne particulate samples collected from different outdoor environments in Singapore. The solubility of 11 trace elements detected in the particulate samples is quantified.  相似文献   

4.
Monitoring the air quality in ambient air is an important step for assessing the air pollution level in one region and its impact to the human health. In this study, the determination of chemical elements concentrations in airborne particulate matter collected in suburban area of Lembang, Indonesia was carried out. Samples were collected using a Gent stacked filter unit sampler in two size fractions of <2.5 μm (fine) and 2.5–10 μm (coarse). Sampling was conducted twice a week for 24 h from January 2008 to June 2009 and 123 pairs of samples were collected. Black carbon was determined by reflectance and chemical elements analysis were performed using particle induced X-ray emission (PIXE). PIXE as one of ion beam analysis techniques is suitable for analyzing particulate matter for its multielemental analysis with good limits of detection. Results showed that none of daily concentrations of PM2.5 and PM10 exceeded the 24 h Indonesian NAAQS for PM2.5 and PM10. Chemical elements such as Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Hg and Pb were determined and the correlation between these elements was reported in order to understand the anthropogenic sources of particulate matter.  相似文献   

5.
A Gent stacked filter unit sampler was used to collect air particulate matter (APM) in separate coarse (PM2.5–10) and fine (PM2.5) size fractions, at a sub-urban site in Lisbon, Portugal. The sampling was done during the year 2001 and two daily samples were taken per week. The filters were analyzed for particulate mass by instrumental neutron activation analysis (INAA). The chemical analysis of APM levels and the study of the atmospheric dynamics by back-trajectories showed that most of the PM2.5 and PM2.5–10 peaks events were associated with air masses transport from the Saharan desert. High mineral load in ambient particulate matter levels were registered during the Saharan dust outbreaks. The accuracy of INAA to measure Fe, Sc and Sm was evaluated by NIST filter standards, revealing results with an agreement of ± 10%. This method constituted an important tool to identify these events.  相似文献   

6.
Coarse and fine fractions of particulate matter (PM) were collected and analysed for trace elements using Instrumental Neutron Activation Analysis and Energy Dispersive X-ray Fluorescence techniques. The result showed high concentrations of Fe, S, Zn and Pb in both the size fractions. The elemental data obtained is used to analyze the temporal and seasonal variations. The trend showed maximum concentrations of PM and metals during winter and minimum during the monsoon season. Enrichment Factor (EF) and source analysis was performed for the same data set to identify the strength of contribution of anthropogenic sources and the possible contributing sources in the study area. EF studies showed high enrichments of Zn, Pb and As in the fine fraction particles. Crustal, vehicular and industrial emissions are identified as the major contributing sources of PM in the study area.  相似文献   

7.
A new environmental certified reference material (CRM) for the determination of multielements in aerosol particulate matter has been developed and certified by the National Institute for Environmental Studies (NIES), Japan, based on analyses by a network of laboratories using a wide range of methods. The origin of the material was atmospheric particulate matter collected on filters in a central ventilating system in a building in Beijing city centre. The homogeneity and stability of this material were sufficient for its use as a reference material. Values for elemental mass fractions in the material were statistically determined based on the analytical results of the participating laboratories. Eighteen certified values and 14 reference values were obtained. The diameters, obtained from a micrographic image using image analysis software, of 99% of the particles were less than 10 μm, demonstrating that almost all the particles in the material could be classified as particles of 10 μm or less in aerodynamic diameter. The chemical composition and particle size distribution of this material were close to those of an authentic aerosol collected in Beijing. NIES CRM 28 is appropriate for use in analytical quality control and in the evaluation of methods used in the analysis of aerosols, particularly those collected in urban environments in northeast Asia Figure New NIES CRM 28 Urban Aerosols and photo micrograph of the material  相似文献   

8.
Emissions from diesel engines contain mutagenic compounds, many of which are derivatives of polycyclic aromatic hydrocarbons. The complexity of extracts of particulate matter requires multi-stage chromatographic analysis performed off-line. In this study, coupled LC-GC is presented as an alternative method for the analysis of the polar fraction of extracts of diesel particulate matter. Preseparation of the sample was achieved by normal phase HPLC and fractions were transferred to the GC through an on-column interface. Through selective transfer, extensive characterization of the extract is possible and chromatograms can be greatly simplified, thus aiding identification.  相似文献   

9.
An analytical procedure is described for the fractionation of organic compounds present in environmental samples and the determination of nitro polyaromatic hydrocarbons (nitro-PAHs). Both low and high resolution liquid chromatography are employed for the prefractionation of the soluble organic fraction (SOF) extracted from particulate matter or gaseous pollutants collected on adsorption traps. High resolution gas chromatography is used to analyze four fractions containing alkanes, PAHs, nitro-PAHs, and other polar PAHs. Nitrogen-containing species are separated by GC and detected specifically using an alkali flame (NPD) detector. Flame ionization (FID) detection, GC-MS of positive ions, and negative ion chemical ionization MS of the whole fraction is used for the identification and quantitation of the various components. The composition of SOF extracted from particulate matter emitted from diesel exhausts is elucidated and a large number of nitro-PAHs identified by the combination of the various techniques.  相似文献   

10.
Two intensive sampling campaigns for coarse (PM2.5–10) and fine (PM2.5) particulate matter were carried out in August 2003 and March 2004 in the multi-impacted centre of the Athens (Greece) conurbation. Receptor modelling by means of Positive Matrix Factorization was utilised in order to provide an insight to the poorly characterised sources of the chemically analysed inorganic fraction of the sampled aerosol mass. Using elemental concentrations, seven factors have been resolved for both fractions for August 2003. Combining elemental and ionic concentrations, nine factors were resolved in the coarse particulate matter and eight in the fine particulate matter for March 2004. The greatest contributors of primary origin are (re)suspended dust/soil and sea salt. Secondary aerosol contributions were resolved in the form of secondary sulphate, secondary nitrate as well as an aged sea salt factor which was characterised by the replacement of chloride with sulphate and, secondarily, nitrate. Furthermore, throughout sites and fractions, primary anthropogenic emissions were identified in a series of factors, including a Pb-rich profile, representing non-catalytic exhaust emissions, a Cu-Mo-Sb-rich profile representing brake emissions, a Zn-Ba-rich profile representing tyre-wear and heavy vehicle brakes, and, lastly, a V-Ni-rich factor representing industrial heavy oil-combustion. Local anthropogenic emissions predominated, outweighing long-range transport as it was suggested by the lack of direct relationship between changes in the wind speed and direction and species mass burdens, as well as factor contributions.  相似文献   

11.
The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni.  相似文献   

12.
This study was designed to investigate the partitioning and sorptive behaviour of tributyltin(TBT), and its degradation products dibutylitin (DBT) and monobutyltin (MBT), in the aquatic environment. Factorial experiments were undertaken to determine the importance of pH and particulate matter concentration in the sorption of butyltin compounds to solid phases. Results indicate that in freshwaters MBT, and to a lesser extent TBT, will be partitioned towards the particulate phase, whereas DBT exhibits a 50:50 partitioning between particulate and solution phases. In estuarine waters, whilst MBT will almost exclusively sorb on to particulates, TBT will be predominantly in the solid-phase fractions but 10–30% may remain in solution. DBT, in contrast, is solubilized in estuarine waters. A more detailed investigation of TBT sorption and particulate matter concentration was undertaken using adsorption isotherms on different sediment types. The results from batch isotherm tests plotted according to the Freundlich adsorption model revealed that TBT adsorption varied with sediment type, increasing in the order sandy-silt < silty-sand < silty-clay. TBT sorption was found to be reversible, indicating that contaminated sediments may release TBT to overlying waters following sediment distrubance. Interstitial water partitioning studies indicate that TBT predominates in the particulate phase with partition coefficients for TBT higher than for DBT and MBT. The TBT partition coefficient in interstitial waters appears to be related to total organic carbon loadings.  相似文献   

13.
The technique of Organic Particulate Analysis (OPA) has been employed to investigate the thermal decomposition of a series of isocyanate compounds; OPA measures the temperature at which particulate or aerosol matter is emitted from a heated organic substance. Of the eighteen isocyanate compounds investigated, seventeen showed strong organoparticulation activity below 200 °C. With the possible exception of four isocyanates, no obvious correlation exists between the OPA values and the melting or decomposition point of the compound.In an attempt to characterize the nature of the particulate matter derived from these compounds, mass-spectral data were obtained at thermoparticulation. Most of the massspectral particulate analyses showed the presence of very polar species (such as diethylamine) which were capable of exhibiting hydrogen-bonding properties. This hydrogen bonding gives rise to particulate matter of sufficient size to be detected by an ion chamber instrument. The ability of phenols to particulate, whereas thiophenols do not particulate, is discussed.  相似文献   

14.
The composition and molecular residence time of soil organic matter (SOM) in four particle‐size fractions (POM >200 µm, POM 63–200 µm, silt and clay) were determined using Curie‐point pyrolysis/gas chromatography coupled on‐line to mass spectrometry. The fractions were isolated from soils, either continuously with a C3 wheat (soil 13C value = ?26.4‰), or transferred to a C4 maize (soil 13C value = ?20.2‰) cropping system 23 years ago. Pyrograms contained up to 45 different pyrolysis peaks; 37 (ca. 85%) were identifiable compounds. Lignins and carbohydrates dominated the POM fractions, proteins were abundant, but lignin was (nearly) absent in the silt and clay fractions. The mean turnover time (MRT) for the pyrolysis products in particulate organic matter (POM) was generally <15 years (fast C pool) and 20–300 years (medium or slow C pools) in silt and clay fractions. Methylcyclopentenone (carbohydrate) in the clay fraction and benzene (mixed source) in the silt fraction exhibited the longest MRTs, 297 and 159 years, respectively. Plant‐derived organic matter was not stored in soils, but was transformed to microbial remains, mainly in the form of carbohydrates and proteins and held in soil by organo‐mineral interactions. Selective preservation of plant‐derived OM (i.e. lignin) based on chemical recalcitrance was not observed in these arable soils. Association/presence of C with silt or clays in soils clearly increased MRT values, but in an as yet unresolved manner (i.e. ‘truly’ stabilized, or potentially still ‘labile’ but just not accessible C). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A method is described for the determination of three- to six-ring polynuclear aromatic hydro-carbons (PAHs) and mononitrated PAHs (nitro-PAHs) in particulate matter. The procedure includes Soxhlet extraction followed by fractionation using gel filtration chromatography and normal-phase liquid chromatography with an aminosilane stationary phase. The resulting fractions were separated by capillary gas chromatography (GC) into individual PAHs and nitro-PAHs which were detected by a flame-ionization detector and a thermal energy analyzer, respectively. Commercially available standards were used for quantification. Individual peak assignments were confirmed by using both mass spectral and retention index data obtained through computerized capillary GC-mass spectrometry. Several samples were processed, including a certified diesel particulate reference material supplied by the National Bureau of Standards for the purpose of evaluating analytical methods. This method may also be applicable in the determination of certain carbonyl PAHs.  相似文献   

16.
A method is described for the rapid, direct emission spectrometric determination of iron in airborne particulate matter collected on polystyrene fiber filters using a conventional high-volume sampler and a Japanese low-volume sampler. The suspension prepared by dissolving the filter material in xylene was directly nebulized into the inductivelycoupled plasma excitation source. An ultrasonic immersion device was used for stirring purposes. Particles within the size range 0.1–100 μm in diameter are collected on the high-volume filters, while the largest particles on low-volume filters do not exceed 10 μm in diameter. The difference in the particle size composition entailed the use of a separate set of standard suspensions for each sample type. Standard suspensions for calibration were prepared from NBS SRM-1648 (urban particulates) as originally received and from its ground powder for high-volume and low-volume samples, respectively. The relative standard deviation was usually below 5%, which is acceptable for large-scale air pollution survey work. The possibility of determining other major and minor elements in airborne particulate matter was also examined.  相似文献   

17.
This study presents the results of year long (2007–2008) particulate matter collecting campaigns. The three particle size fractions of particulate matter were collected in Krakow, Poland. Fine fraction consists of particles of a diameter below 2.5 µm, medium is between 2.5 and 8 µm and coarse fraction contains particles above 8 µm. Elemental concentrations were evaluated for each sample. Following elements were measured by EDXRF method: K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Br, and Pb. During each sampling campaign meteorological parameters such as temperature, wind speed, wind direction, humidity were taken from the same place. The highest values of mass particulate matter showed results from January 2008 and April 2008. These were about 14 µg/m3 for fine fraction, 8 µg/m3 for medium and 16 µg/m3 for coarse fraction. The lowest values were observed in May 2007, they were 4, 6, 6 µg/m3, respectively. During the winter season the wind speed was low and particulate matter remained in the air in high concentrations. In May 2007 the speed of wind was higher, reaching 2–3 m/s. PM was blown away from the city from the direction of N–W. Measured concentrations of elements were low, they were below permissible values specified by EU. The coarse fraction concentrations of Ca, Mn, and Fe were higher and characterized by the same trend. These samples were collected when the wind speed was low and its direction was from south-east. As concentrations of Cr, Cu, and Zn were low, these elements did not come from the south-east direction of Krakow. Concentration of Br correlates to the concentration of Pb. It suggests that they came from the same source (vehicles fuels burning).  相似文献   

18.
Capillary zone electrophoresis with indirect UV detection was developed for the simultaneous analysis of inorganic anions and organic acids using a mixed solution of 2,6-pyridinedicarboxylic acid and cetyltrimethylammonium hydroxide as the background electrolyte (BGE). The parameters which influence the separation, such as indirect UV detection wavelength, BGE conditions, applied voltage and extraction conditions were investigated. Thirteen inorganic anions and organic acids were detected within 20 min. The calibration curves of each analyte were linear with correlation coefficients greater than 0.991. The relative standard deviations (= 10) of the peak areas ranged from 0.6% to 3.3%. The detection limits for these species ranged from 0.4 to 1.4 mg/L at a signal-to-noise ratio of 3. The recovery rate of each analyte was more than 80% under optimised extraction conditions, except for nitrite. The proposed method was applied towards the analysis of inorganic anions and organic acids in the atmospheric particulate matter using an Andersen sampler. The particle size of the particulate matter was determined, but not the size of the anions.  相似文献   

19.
Summary Seven Asian countries have been collaborating in collecting airborne particulate matter (APM) in their individual countries and analyzing them by neutron activation analysis as a common analytical tool. APM samples were collected into two fractions of fine and coarse grains (PM2 and PM2-10, respectively). Analytical data were compared from several viewpoints such as particulate sizes, locality of sampling sites (either urban or rural) and geographical location of participating countries. Chemical composition and their monthly variations as well as mass concentrations appear to be highly characteristic for individual sampling sites, suggesting that NAA data are suitable for evaluating the air quality in each site.  相似文献   

20.
Airborne particulate matter has been collected by a high volume and a Gent-type stacked filter unit (SFU) low volume sampler during the 2000-2001 period. The high volume sampler used S&S cellulosic and the SFU two Nuclepore polycarbonate filters to collect fine and coarse size fractions. The elemental analysis of the collected TSP, fine and coarse particles has been performed using instrumental neutron activation analysis and atomic absorption spectrometry. Twenty-two trace elements on Nuclepore and twenty-four elements on S&S filters have been measured. The collected data have been compared with the previous data of Tehran air and with other cities in the world. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号