首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to determine the effect of primary-tone level variation, L2--L1, on the amplitude of distortion-product otoacoustic emissions (DPOAEs). The DPOAE at the frequency 2f1--f2 (f2 greater than f1) was measured in 20 ears of ten normally hearing subjects. Acoustic distortion products were generated by primaries f1 and f2 with geometric mean frequencies of 1, 2, and 4 kHz. The f2/f1 ratios were 1.25 (1 kHz), 1.23 (2 kHz), and 1.21 (4 kHz). The primary-tone level L1 was kept constant at either 65 or 75 dB SPL while the second primary-tone level L2 was varied between 20 and 90 dB SPL in 5-dB steps. The level differences L2--L1 generating maximal DPOAE amplitudes depended on L1 and on the geometric mean frequency of f1 and f2. There were large interindividual differences. Overall, the L2--L1 evoking maximal mean DPOAE amplitudes was --10 dB for geometric mean frequencies of 1 and 2 kHz with both L1 = 65 dB SPL and L1 = 75 dB SPL. For 4 kHz, L2-L1 was --5 dB with L1 = 65 dB SPL and 0 dB with L1 = 75 dB SPL. The mean slopes of the DPOAE growth functions in the initial linearly increasing portions were steeper at higher stimulus frequencies, increasing from 0.52 at 1 kHz to 0.72 at 4 kHz for L1 = 65 dB SPL and from 0.48 at 1 kHz to 0.72 at 4 kHz for L1 = 75 dB SPL.  相似文献   

2.
Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been performed with normal-hearing subjects. The dependence of fine-structure patterns on the frequency ratio f2/f1 was investigated by changing f1 or f2 only (fixed f2 or fixed f1 paradigm, respectively), and by changing both primaries at a fixed ratio and looking at different order DPOAE. When f2/f1 is varied in the fixed ratio paradigm, the patterns of 2 f1-f2 fine structure vary considerably more if plotted as a function of f2 than as a function of fDP. Different order distortion products located at the same characteristic place on the basilar membrane (BM) show similar patterns for both, the fixed-f2 and fDP paradigms. Fluctuations in DPOAE level up to 20 dB can be observed. In contrast, the results from a fixed-fDP paradigm do not show any fine structure but only an overall dependence of DP level on the frequency ratio, with a maximum for 2f1-f2 at f2/f1 close to 1.2. Similar stimulus configurations used in the experiments have also been used for computer simulations of DPOAE in a nonlinear and active model of the cochlea. Experimental results and model simulations give strong evidence for a two-source model of DPOAE generation: The first source is the initial nonlinear interaction of the primaries close to the f2 place. The second source is caused by coherent reflection from a re-emission site at the characteristic place of the distortion product frequency. The spectral fine structure of DPOAE observed in the ear canal reflects the interaction of both these sources.  相似文献   

3.
Distortion product otoacoustic emissions (DPOAEs) and basilar membrane (BM) vibration were measured simultaneously in the 6-9 kHz region of chinchilla cochleae. BM-Input-Output functions in a two-tone paradigm behaved similarly to DPOAEs for the 2f1-f2 component, nonmonotonic growth with the intensity of the lower frequency primary and a notch in the functions around 60 dB SPL. Ripples in frequency functions occur in both BM and OAE curves as a function of the distortion frequency. Optimum f2/f1 ratios for DPOAE generation are near 1.2. The slope of phase curves indicates that for low f2f1(<1.1) the emission source is the place location while for f2f1>1.1 the relative constancy of the phase function suggests that the place is the nonlinear region of f2, i.e., the wave location. Magnitudes of the DPOAEs increase rapidly above 60 dB SPL suggesting a different source or mechanism at high levels. This is supported by the observation that the high level DPOAE and BM-DP responses remain for a considerable period postmortem.  相似文献   

4.
Recently, Boege and Janssen [J. Acoust. Soc. Am. 111, 1810-1818 (2002)] fit linear equations to distortion product otoacoustic emission (DPOAE) input/output (UO) functions after the DPOAE level (in dB SPL) was converted into pressure (in microPa). Significant correlations were observed between these DPOAE thresholds and audiometric thresholds. The present study extends their work by (1) evaluating the effect of frequency, (2) determining the behavioral thresholds in those conditions that did not meet inclusion criteria, and (3) including a wider range of stimulus levels. DPOAE I/O functions were measured in as many as 278 ears of subjects with normal and impaired hearing. Nine f2 frequencies (500 to 8000 Hz in 1/2-octave steps) were used, L2 ranged from 10 to 85 dB SPL (5-dB steps), and L1 was set according to the equation L1 = 0.4L2 + 39 dB [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] for L2 levels up to 65 dB SPL, beyond which L1 = L2. For the same conditions as those used by Boege and Janssen, we observed a frequency effect such that correlations were higher for mid-frequency threshold comparisons. In addition, a larger proportion of conditions not meeting inclusion criteria at mid and high frequencies had hearing losses exceeding 30 dB HL, compared to lower frequencies. These results suggest that DPOAE I/O functions can be used to predict audiometric thresholds with greater accuracy at mid and high frequencies, but only when certain inclusion criteria are met. When the SNR inclusion criterion is not met, the expected amount of hearing loss increases. Increasing the range of input levels from 20-65 dB SPL to 10-85 dB SPL increased the number of functions meeting inclusion criteria and increased the overall correlation between DPOAE and behavioral thresholds.  相似文献   

5.
Given that high-frequency hearing is most vulnerable to cochlear pathology, it is important to characterize distortion-product otoacoustic emissions (DPOAEs) measured with higher-frequency stimuli in order to utilize these measures in clinical applications. The purpose of this study was to explore the dependence of DPOAE amplitude on the levels of the evoking stimuli at frequencies greater than 8 kHz, and make comparisons with those data that have been extensively measured with lower-frequency stimuli. To accomplish this, DPOAE amplitudes were measured at six different f2 frequencies (2, 5, 10, 12, 14, and 16 kHz), with a frequency ratio (f2/f1) of 1.2, at five fixed levels (30 to 70 dB SPL) of one primary (either f1 or f2), while the other primary was varied in level (30 to 70 dB SPL). Generally, the level separation between the two primary tones (L1 > L2) generating the largest DPOAE amplitude (referred to as the "optimal level separation") decreased as the level of the fixed primary increased. Additionally, the optimal level separation was frequency dependent, especially at the lower fixed primary tone levels ( < or = 50 dB SPL). In agreement with previous studies, the DPOAE level exhibited greater dependence on L1 than on L2.  相似文献   

6.
Evidence of the compressive growth of basilar-membrane displacement can be seen in distortion-product otoacoustic emission (DPOAE) levels measured as a function of stimulus level. When the levels of the two stimulus tones (f1 and f2) are related by the formula L1 = 39 dB + 0.4 x L2 [Kummer et al., J. Acoust. Soc. Am. 103, 3431-3444 (1998)] the shape of the function relating DPOAE level to L2 is similar (up to an L2 of 70 dB SPL) to the classic Fletcher and Munson [J. Acoust. Soc. Am. 9, 1-10 (1933)] loudness function when plotted on a logarithmic scale. Explicit estimates of compression have been derived based on recent DPOAE measurements from the laboratory. If DPOAE growth rate is defined as the slope of the DPOAE I/O function (in dB/dB), then a cogent definition of compression is the reciprocal of the growth rate. In humans with normal hearing, compression varies from about 1 at threshold to about 4 at 70 dB SPL. With hearing loss, compression is still about 1 at threshold, but grows more slowly above threshold. Median DPOAE I/O data from ears with normal hearing, mild loss, and moderate loss are each well fit by log functions. When the I/O function is logarithmic, then the corresponding compression is a linear function of stimulus level. Evidence of cochlear compression also exists in DPOAE suppression tuning curves, which indicate the level of a third stimulus tone (f3) that reduces DPOAE level by 3 dB. All three stimulus tones generate compressive growth within the cochlea; however, only the relative compression (RC) of the primary and suppressor responses is observable in DPOAE suppression data. An RC value of 1 indicates that the cochlear responses to the primary and suppressor components grow at the same rate. In normal ears, RC rises to 4, when f3 is an octave below f2. The similarities between DPOAE and loudness compression estimates suggest the possibility of predicting loudness growth from DPOAEs; however, intersubject variability makes such predictions difficult at this time.  相似文献   

7.
A maximum auditory steady-state response (ASSR) amplitude is yielded when the ASSR is elicited by an amplitude-modulated tone (f(c)) with a fixed modulation frequency (f(m) = 40 Hz), whereas the maximum distortion product otoacoustic emission (DPOAE) level is yielded when the DPOAE is elicited using a fixed frequency ratio of the primary tones (f2/f1 = 1.2). When eliciting the DPOAE and ASSR by the same tone pair, optimal stimulation is present for either DPOAE or ASSR and thus adequate simultaneous DPOAE/ASSR measurement is not possible across test frequency f2 or f(c), respectively. The purpose of the present study was to determine whether the ASSR and DPOAE can be measured simultaneously without notable restrictions using a DPOAE stimulus setting in which one primary tone is amplitude modulated. A DPOAE of frequency 2f1-f2 and ASSR of modulation frequency 41 Hz were measured in ten normal hearing subjects at a test frequency between 0.5 and 8 kHz (f2 = f(c)). The decrease in the DPOAE level and the loss in ASSR amplitude during hybrid mode stimulation amounted, on average, to only 2.60 dB [standard deviation (SD) = 1.38 dB] and 1.83 dB (SD = 2.38 dB), respectively. These findings suggest simultaneous DPOAE and ASSR measurements to be feasible across all test frequencies when using a DPOAE stimulus setting where the primary tone f2 is amplitude modulated.  相似文献   

8.
Measurements of DPOAE level in the presence of a suppressor were used to describe a pattern that is qualitatively similar to population studies in the auditory nerve and to behavioral studies of upward spread of masking. DPOAEs were measured in the presence of a suppressor (f3) fixed at either 2.1 or 4.2 kHz, and set to each of seven levels (L3) from 20 to 80 dB SPL. In the presence of a fixed f3 and L3 combination, f2 was varied from about 1 oct below to at least 1/2 oct above f3, while L2 was set to each of 6 values (20-70 dB SPL). L1 was set according to the equation L1 = 0.4L2 + 39 [Janssen et al., J. Acoust. Soc. Am. 103, 3418-3430 (1998)]. At each L2, L1 combination, DPOAE level was measured in a control condition in which no suppressor was presented. Data were converted into decrements (the amount of suppression, in dB) by subtracting the DPOAE level in the presence of each suppressor from the DPOAE level in the corresponding control condition. Plots of DPOAE decrements as a function of f2 showed maximum suppression when f2 approximately = f3. As L3 increased, the suppressive effect spread more towards higher f2 frequencies, with less spread towards lower frequencies relative to f3. DPOAE decrement versus L3 functions had steeper slopes when f2 > f3, compared to the slopes when f2 < f3. These data are consistent with other findings that have shown that response growth for a characteristic place (CP) or frequency (CF) depends on the relation between CP or CF and driver frequency, with steeper slopes when driver frequency is less than CF and shallower slopes when driver frequency is greater than CF. For a fixed amount of suppression (3 dB), L3 and L2 varied nearly linearly for conditions in which f3 approximately = f2, but grew more rapidly for conditions in which f3 < f2, reflecting the basal spread of excitation to the suppressor. The present data are similar in form to the results observed in population studies from the auditory nerve of lower animals and in behavioral masking studies in humans.  相似文献   

9.
Distortion product otoacoustic emissions (DPOAEs) are used widely in humans to assess cochlear function. The standard procedure consists of recording the 2f1-f2 DPOAE amplitude as a function of the f2 frequency, using a fixed f2/f1 ratio (DPOAE-gram), close to 1.20. DPOAE amplitude, as recorded in the DPOAE-gram, shows a wide range of values in normal-hearing subjects, which can impair the predictive value of the DPOAE-gram for hearing thresholds. This study is aimed at comparing intersubject variability in 2f1-f2 DPOAE amplitude according to three paradigms: a fixed f2/f1 ratio, such as the DPOAE-gram, a variable ratio DPOAE-gram (f2/f1 adapted to frequency) and an "optimum" DPOAE-gram, where the f2/f1 is adapted both to subject and frequency. The 2f1-f2 DPOAE amplitude has been investigated on 18 normally hearing subjects at ten different f2 frequencies (from 0.75 to 6 kHz), using an f2 fixed, f1 sweep paradigm, and allowed to define, for each frequency, the f2/f1 ratio giving the greatest 2f1-f2 DPOAE amplitude (or optimum ratio). Results showed a large intersubject variability of the optimum ratio, especially at frequencies below 1.5 kHz, and a significant decrease of the optimum ratio with frequency. The optimum DPOAE-gram was underestimated by up to 5.8 dB on average (up to 14.9 dB for an individual subject) by the fixed ratio DPOAE-gram, and by up to 3 dB on average (up to 10.6 dB for an individual subject) by the variable ratio DPOAE-gram. Intersubject variability was slightly but significantly reduced in the optimum DPOAE-gram versus the fixed-ratio DPOAE-gram. Lastly, correlations between tone-burst evoked otoacoustic emission (TBOAE) amplitudes and maximum DPOAE amplitudes were significantly greater than correlations between TBOAE amplitudes and fixed-ratio DPOAE amplitudes.  相似文献   

10.
The complete timeline for maturation of human cochlear function has not been defined. Distortion product otoacoustic emission (DPOAE)-based measures of cochlear function show non-adult-like responses from premature and term-born neonates at high f2 frequencies; however, older infants were not included in these studies. In the present experiment, previously collected DPOAE ipsilateral suppression data from premature neonates were combined with new data collected from adults, term-born neonates, and 3-month-old infants to further examine the time course for maturation of cochlear function. DPOAE suppression tuning curves (STC) and suppression growth patterns were measured in the three age groups at f2 = 6000 Hz, L1 = 65, L2 = 55 dB SPL, with an f2/f1 of 1.2. Results indicate that term-born neonates and 3-month-old infants have non-adult-like STC width, slope on the low-frequency flank, and tip features. However, the two infant groups are not significantly different from one another. Suppression growth patterns for low-frequency suppressor tones show a clear developmental progression. In general, the younger the infant, the more shallow and compressive the suppression growth for the lowest suppressor frequencies. These findings suggest a high-frequency postnatal immaturity in cochlear function as measured by DPOAE suppression. Results may have been influenced by noncochlear factors, such as middle-ear immaturity. These factors are reviewed and considered.  相似文献   

11.
A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1-f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1 = 0.4L2 + 39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1-f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.  相似文献   

12.
Low- and high-frequency cochlear nonlinearity was studied by measuring distortion product otoacoustic emission input/output (DPOAE I/O) functions at 0.5 and 4 kHz in 103 normal-hearing subjects. Behavioral thresholds at both f2's were used to set L2 in dB SL for each subject. Primary levels were optimized by determining the L1 resulting in the largest L(dp) for each L2 for each subject and both f2's. DPOAE I/O functions were measured using L2 inputs from -10 dB SL (0.5 kHz) or -20 dB SL (4 kHz) to 65 dB SL (both frequencies). Mean DPOAE I/O functions, averaged across subjects, differed between the two frequencies, even when threshold was taken into account. The slopes of the I/O functions were similar at 0.5 and 4 kHz for high-level inputs, with maximum compression ratios of about 4:1. At both frequencies, the maximum slope near DPOAE threshold was approximately 1, which occurred at lower levels at 4 kHz, compared to 0.5 kHz. These results suggest that there is a wider dynamic range and perhaps greater cochlear-amplifier gain at 4 kHz, compared to 0.5 kHz. Caution is indicated, however, because of uncertainties in the interpretation of slope and because the confounding influence of differences in noise level could not be completely controlled.  相似文献   

13.
Distortion product otoacoustic emissions (DPOAE) were recorded from eight human subjects with mild to moderate cochlear hearing loss, using a frequency spacing of 48 primary pairs per octave and at a level L1 = L2 = 60 dBSPL and with a fixed ratio f2/f1. Subjects with different shapes of hearing thresholds were selected. They included subjects with near-normal hearing within only a limited frequency range, subjects with a notch in the audiogram, and subjects with a mild to moderate high-frequency loss. If the primaries were located in a region of normal or near-normal hearing, but DP frequencies were located in a region of raised thresholds, the distortion product 2 f1-f2 was still observable, but the DP fine structure disappeared. If the DP frequencies fell into a region of normal thresholds, fine structure was preserved as long as DPOAE were generated, even in cases of mild hearing loss in the region of the primaries. These experimental results give further strong evidence that, in addition to the initial source in the primary region, there is a second source at the characteristic place of fDP. Simulations in a nonlinear and active computer model for DPOAE generation indicate different generation mechanisms for the two components. The disappearance of DPOAE fine structure might serve as a more sensitive indicator of hearing impairment than the consideration of DP level alone.  相似文献   

14.
Distortion product otoacoustic emission (DPOAE) fine structure has been attributed to the interaction of two cochlear-source mechanisms (distortion and reflection sources). A suppressor presented near the 2f1-f2 frequency reduces the reflection-source contribution and, therefore, DPOAE fine structure. Optimal relationships between stimulus and suppressor conditions, however, have not been described. In this study, the relationship between suppressor level (L3) and stimulus level (L2) was evaluated to determine the L3 that was most effective at reducing fine structure. Subjects were initially screened to find individuals who produced DPOAE fine structure. A difference in the prevalence of fine structure in two frequency intervals was observed. At 2 kHz, 11 of 12 subjects exhibited fine structure, as compared to 5 of 22 subjects at 4 kHz. Only subjects demonstrating fine structure participated in subsequent measurements. DPOAE responses were evaluated in 1/3-octave intervals centered at 2 or 4 kHz, with 4 subjects contributing data at each interval. Multiple L3's were evaluated for each L2, which ranged from 20 to 80 dB SPL. The results indicated that one or more L3's at each L2 were roughly equally effective at reducing DPOAE fine structure. However, no single L3 was effective at all L2's in every subject.  相似文献   

15.
Otoacoustic emissions are typically reduced in amplitude when broadband noise is presented to the contralateral ear. This contralateral suppression is attributed to activation of the medial olivocochlear system, which has an inhibitory effect on outer hair-cell activity. By studying the effects of contralateral noise on cochlear output at different stages of auditory maturation in human neonates, it is possible to describe the timecourse for development of medial efferent system function in humans. The present study recorded 2 f1-f2 distortion product otoacoustic emissions (DPOAE) in human adults, term and premature neonates at three f2 frequencies: 1500, 3000, and 6000 Hz, using fixed primary tone frequency ratio (f2/f1 = 1.2) and level separation (10 dB, L1 > L2). Average DPOAE growth functions were recorded with and without contralateral broadband noise. Results indicate that contralateral suppression of DPOAEs is absent at 6000 Hz, but present at 1500 and 3000 Hz for all ages. However, DPOAE amplitude from premature neonates was not altered by noise in an adult-like manner; in this age group, DPOAE amplitude was equally likely to by suppressed or enhanced by noise presented contralaterally. Contralateral enhancement may reflect a temporary stage of immaturity in outer hair cell-medial efferent fiber synapses just prior to term birth.  相似文献   

16.
It is studied whether the +5 dB penalty for impulsiveness established by ISO 1999:1990 accounts for a higher risk of noise-induced hearing loss. A total of 16 normal-hearing human subjects were exposed for 10 min to two types of binaural industrial-recordings: (1) a continuous broad-band noise normalized to L(EX,8 h)=80 dBA and (2) the combination of the previous stimulus with an impulsive noise normalized to L(EX,8 h)=75+5(db penalty)=80 dBA (peak level 117 dBC and repetition rate of 0.5 impacts per second). Distortion product otoacoustic emissions (DPOAEs) were measured in a broad frequency range before and in the following 90 min after the exposure. The group results show that the continuous exposure had a bigger impact on DPOAE levels, with a maximum DPOAE shift of approximately 5 dB in the frequency range of 2-3.15 kHz during the first 10 min of the recovery. No evident DPOAE shift is seen for the impulsive + continuous stimulus. The results indicate that the penalty overestimated the effects on DPOAE levels and support the concept that the risk of hearing loss from low-level impulses may be predicted on an equal-energy basis.  相似文献   

17.
The simultaneous presentation of two tones with frequencies f(1) and f(2) causes the perception of several combination tones in addition to the original tones. The most prominent of these are at frequencies f(2)-f(1) and 2f(1)-f(2). This study measured human physiological responses to the 2f(1)-f(2) combination tone at 500 Hz caused by tones of 750 and 1000 Hz with intensities of 65 and 55 dB SPL, respectively. Responses were measured from the cochlea using the distortion product otoacoustic emission (DPOAE), and from the auditory cortex using the 40-Hz steady-state magnetoencephalographic (MEG) response. The perceptual response was assessed by having the participant adjust a probe tone to cause maximal beating ("best-beats") with the perceived combination tone. The cortical response to the combination tone was evaluated in two ways: first by presenting a probe tone with a frequency of 460 Hz at the perceptual best-beats level, resulting in a 40-Hz response because of interaction with the combination tone at 500 Hz, and second by simultaneously presenting two f(1) and f(2) pairs that caused combination tones that would themselves beat at 40 Hz. The 2f(1)-f(2) DPOAE in the external auditory canal had a level of 2.6 (s.d. 12.1) dB SPL. The 40-Hz MEG response in the contralateral cortex had a magnitude of 0.39 (s.d. 0.1) nA m. The perceived level of the combination tone was 44.8 (s.d. 11.3) dB SPL. There were no significant correlations between these measurements. These results indicate that physiological responses to the 2f(1)-f(2) combination tone occur in the human auditory system all the way from the cochlea to the primary auditory cortex. The perceived magnitude of the combination tone is not determined by the measured physiological response at either the cochlea or the cortex.  相似文献   

18.
Distortion-product otoacoustic emissions (DPOAEs) were used to describe suppression growth in normal-hearing humans. Data were collected at eight f(2) frequencies ranging from 0.5 to 8 kHz for L(2) levels ranging from 10 to 60 dB sensation level. For each f(2) and L(2) combination, suppression was measured for nine or eleven suppressor frequencies (f(3)) whose levels varied from -20 to 85 dB sound pressure level (SPL). Suppression grew nearly linearly when f(3) ≈ f(2), grew more rapidly for f(3)?< f(2), and grew more slowly for f(3)?> f(2). These results are consistent with physiological and mechanical data from lower animals, as well as previous DPOAE data from humans, although no previous DPOAE study has described suppression growth for as wide a range of frequencies and levels. These trends were evident for all f(2) and L(2) combinations; however, some exceptions were noted. Specifically, suppression growth rate was less steep as a function of f(3) for f(2) frequencies ≤ 1 kHz. Thus, despite the qualitative similarities across frequency, there were quantitative differences related to f(2), suggesting that there may be subtle differences in suppression for frequencies above 1 kHz compared to frequencies below 1 kHz.  相似文献   

19.
DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2 = 4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1 = L2 + 10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.  相似文献   

20.
Distortion-product otoacoustic emission (DPOAE) suppression data as a function of suppressor level (L(3)) for f(2) frequencies from 0.5 to 8 kHz and L(2) levels from 10 to 60 dB sensation level were used to construct suppression tuning curves (STCs). DPOAE levels in the presence of suppressors were converted into decrement versus L(3) functions, and the L(3) levels resulting in 3 dB decrements were derived by transformed linear regression. These L(3) levels were plotted as a function of f(3) to construct STCs. When f(3) is represented on an octave scale, STCs were similar in shape across f(2) frequency. These STCs were analyzed to provide estimates of gain (tip-to-tail difference) and tuning (Q(ERB)). Both gain and tuning decreased as L(2) increased, regardless of f(2), but the trend with f(2) was not monotonic. A roughly linear relation was observed between gain and tuning at each frequency, such that gain increased by 4-16 dB (mean ≈ 5 dB) for every unit increase in Q(ERB), although the pattern varied with frequency. These findings suggest consistent nonlinear processing across a wide frequency range in humans, although the nonlinear operation range is frequency dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号