首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alkaloid thalactamine (N-methyl-5,6,7-trimethoxy-1(2H)isoquinolone) was synthesised in two steps from 4,5,6-trimethoxyhomophthalic acid (1a). Heating la with DMF/POCI3 at 100° furnished thalactamine-4-earhoxylic acid which was easily decarboxylated to give the alkaloid thalactamine. By the same two steps, the alkaloid N-methyl-6,7-dimethoxy-1(2H)-isoquinolone is obtained from 4,5-dimethoxyhomophthalic acid. Synthesis for la from 2-bromogallic acid trimethyl ether was modified to give excellent yield. 5,6,7-Trimethoxy and 6,7-dimethoxyisocoumarin-4-carboxylic acid esters were synthesised from the homophthalic acids 1a and b by interacting them with DMF/phosphoryl chloride at 0°, to give corresponding 4-(N,N-dimethylaminoformylidene)isochroman-1,3-dione derivatives Vla and b and treating their alcoholic solutions with dry hydrogen chloride gas. The isocoumarins were converted into N-methyl-1(2H)isoquinolonesby treating them with aqueous methylamine. The isochromandione Vla slowly changed into 3-chloro-4-formyl-5,6,7-trimethoxyisocoumarin during the working up of the reaction.  相似文献   

2.
Bis(2,5‐di­methoxy‐4‐methyl­phenyl)­methane, C19H24O4, (IIa), was obtained and characterized as a minor product from the reaction of tolu­hydro­quinone di­methyl ether (1,4‐dimethoxy‐2‐methylbenzene) with N‐(hydroxy­methyl)­tri­fluoro­acet­amide. Similarly, bis(2,5‐di­methoxy‐3,4,6‐tri­methyl­phenyl)­methane, C23H32O4, (IIb), was prepared from the corresponding reaction of tri­methyl­hydro­quinone di­methyl ether (2,5‐dimethoxy‐1,3,4‐trimethylbenzene). The mol­ecules of (IIa) and (IIb) each lie on a twofold axis passing through the methyl­ene group. The dihedral angle between the planar phenyl rings is 73.4 (1)° in (IIa) and 77.9 (1)° in (IIb). The external bond angles around the bridging methyl­ene group are 116.6 (2) and 117.3 (2)° for (IIa) and (IIb), respectively. In (IIa), the methoxy substituents lie in the plane of the ring and are conjugated with the aromatic system, whereas in (IIb), they are almost perpendicular to the phenyl ring and are positioned on opposite sides.  相似文献   

3.
Conformational Analysis of Acylated 5,6,7,8-Tetrahydropterines The conformation of N(5)-acetates, and of N(5)- and N(8)-trifluoroacetates, respectively, of 6-methyl- and cis-6, 7-dimethyl-tetrahydropterines is studied by 1H-NMR. spectroscopy. It is shown that the methyl group next to the acylated nitrogen atom is in quasi-axial position.  相似文献   

4.
Investigations on Aromatic Amino-Claisen Rearrangements The thermal and acid catalysed rearrangement of p-substituted N-(1′,1′-dimethylallyl)anilines (p-substituent=H (5) , CH3 (6) , iso-C3H7 (7) , Cl (8) , OCH3 (9) , CN (10) ), of N-(1′,1′-dimethylallyl)-2,6-dimethylaniline (11) , of o-substituted N-(1′-methylallyl)anilines (o-substituent=H (12) , CH3 (13) , t-C4H9 (14) , of (E)- and (Z)-N-(2′-butenyl)aniline ((E)- and (Z)- 16 ), of N-(3′-methyl-2′-butenylaniline (17) and of N-allyl- (1) and N-allyl-N-methylaniline (15) was investigated (cf. Scheme 3). The thermal transformations were normally conducted in 3-methyl-2-butanol (MBO), the acid catalysed rearrangements in 2N -0,1N sulfuric acid. - Thermal rearrangements. The N-(1′,1′-dimethylallyl)anilines rearrange in MBO at 200-260° with the exception of the p-cyano compound 10 in a clean reaction to give the corresponding 2-(3′-methyl-2′-butenyl)anilines 22–26 (Table 2 and 3). The amount of splitting into the anilines is <4% ( 10 gives ? 40% splitting). The secondary kinetic deuterium isotope effect (SKIDI) of the rearrangement of 5 and its 2′,3′,3′-d3-isomer 5 amounts to 0.89±0.09 at 260° (Table 4). This indicates that the partial formation of the new s?-bond C(2), C(3′) occurs already in the transition state, as is known from other established [3,3]-sigmatropic rearrangements. The rearrangement of the N-(1′-methylallyl)anilines 12–14 in MBO takes place at 290–310° to give (E)/(Z)-mixtures of the corresponding 2-(2′-Butenyl)anilines ((E)- and (Z)- 30,-31 , and -32 ) besides the parent anilines (5–23%). Since a dependence is observed between the (E)/(Z)-ratio and the bulkiness of the o-substituent (H: (E)- 30 /(Z)- 30 =4,9; t-C4H9: (E)- 32 /(Z)- 32 =35.5; cf. Table 6), it can be concluded, that the thermal amino-Claisen rearrangement occurs preferentially via a chair-like transition state (Scheme 22). Methyl substitution at C(3′) in the allyl chain hinders the thermal amino-Claisen-rearrangement almost completely, since heating of (E)-and (Z)- 16 , in MBO at 335° leads to the formation of the expected 2-(1′-methyl-allyl) aniline (33) to an extent of only 12 and 5%, respectively (Scheme 9). The main reaction (?60%) represents the splitting into aniline. This is the only observable reaction in the case of 17 . The inversion of the allyl chain in 16 - (E)- and (Z)- 30 cannot be detected - indicated that 33 is also formed in a [3, 3]-sigmatropic process. This is also true for the thermal transformation of N-allyl- (1) and N-allyl-N-methylaniline (15) into 2 and 34 , respectively, since the thermal rearrangement of 2′, 3′, 3′-d3- 1 yields 1′, 1′, 2′-d3- 2 exclusively (Table 8). These reaction are accompanied to an appreciable extent by homolysis of the N, C (1′) bond: compound 1 yields up to 40% of aniline and 15 even 60% of N-methylaniline ((Scheme 10 and 11). The activation parameters were determined for the thermal rearrangements of 1, 5, 12 and 15 in MBO (Table 22). All rearrangements show little solvent dependence (Table 5, 7 and 9). The observed ΔH values are in the range of 34-40 kcal/mol and the ΔS values very between -13 to -19 e.u. These values are only compatible with a cyclic six-membered transition state of little polarity. - Acid catalysed rearrangements. - The rearrangement of the N-(1′, 1′-dimethylallyl) anilines 5-10 occurs in 2N sulfuric acid already at 50-70° to give te 2-(3′-methyl-2′-butenyl)anilines 22-27 accompanied by their hydrated forms, i.e. the 2-(3′-hydroxy-3′-methylbutyl) anilines 35-40 (Tables 10 and 11). The latter are no more present when the rearrangement is conducted in 0.1 N sulfuric acid, whilst the rate of rearrangement is practically the same as in 2 N sulfuric acid (Table 12). The acid catalysed rearrangements take place with almost no splitting. The SKIDI of the rearrangement of 5 and 2′, 3′, 3′-d3- 5 is 0.84±0.08 (2 N H2SO4, 67, 5°, cf. Table 13) and thus in accordance with a [3,3]-sigmatropic process which occurs in the corresponding anilinium ions. Consequently, the rearrangement of a 1:1 mixture of 2′, 3′, 3′-d3- 5 and 3, 5-d2- 5 in 2 N sulfuric acid at 67, 5° occurs without the formation of cross-products (Scheme 13). In the acid catalysed rearrangement of the N-1′-methylallyl) anilines 12-14 at 105-125° in 2 N sulfuric acid the corresponding (E)- and (Z)-anilines are the only products formed (Table 14 and 15). Again no splitting is observed. Furthermore, a dependence of the observed (E)/(Z) ratio and the bulkiness of the o-substituent ( H : (E)/(Z)- 30 = 6.5; t- C 4 H 9: (E)- 32 /(Z)- 32 = 90; cf. Table 15) indicates that also in the ammonium-Claisen rearrangement a chair-like transition state is preferentially adopted. In contrast to the thermal rearrangement the acid catalysed transformation in 2 N-O, 1 N sulfuric acid (150-170°) of (E)- and (Z)- 16 as well as of 1 and 15 , occurs very cleanly to yield the corresponding 2-allylated anilines 33, 2 and 34 (Scheme 15 and 18). The amounts of the anilines formed by splitting are <2%. During longer reaction periods hydration of the allyl chain of the products occurs, and in the case of the rearrangement of (E)- and )Z)- 16 the indoline 45 is formed (Scheme 15 and 18). All transformations occur with inversion of the allyl chain. This holds also for the rearrangement of 1 , since 3′, 3′-d2- 1 gives only 1′, 1′-d2- 2 (Scheme 17). The activation parameters were determined for the acid catalysed rearrangement of 1, 5, 12 and 15 in 2 N sulfuric acid (Table 22). The ΔH values of 27-30 kcal-mol and the ΔS values of +9 to -12 e.u. are in agreement with a [3, 3]-sigmatropic process in the corresponding anilinium ions. The acceleration factors (kH+/kΔ) calculated from the activation parameters of the acid catalysed and thermal rearrangements of the anilines are in the order of 105 - 107. They demonstrate that the essential driving force of the ammonium-Claisen rearrangement is the ‘delocalisation of the positive charge’ in the transition state of these rearrangements (cf. Table 23). Solvation effects in the anilinium ions, which can be influenced sterically, also seem to play a role. This is impressively demonstrated by N-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (11) : its rearrangement into 4-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (43) cannot be achieved thermally, but occurs readily at 30° in 2 N sulfuric acid. From a preparative standpoint the acid catalysed rearrangement in 2 N-0, 1 N sulfuric acid of N-allylanilines into 2-allylanilines, or if the o-positions are occupied into 4-allylanilines, is without doubt a useful synthetic method (cf. also [17]).  相似文献   

5.
The X‐ray crystal analyses of the two 11‐deoxy‐didehydrohexahydrobenzo[c]phenanthridine‐type alkaloid derivatives 3 and 4 , derived from (±)‐corynoline ( 1 ) and (+)‐chelidonine ( 2 ), established their structures as (±)‐(5bRS,12bRS)‐5b,12b,13,14‐tetrahydro‐5b,13‐dimethyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 3 ) and (+)‐rel‐(12bR)‐7,12b,13,14‐tetrahydro‐13‐methyl[1,3]benzodioxolo[5,6‐c]‐1,3‐dioxolo[4,5‐i]phenanthridine ( 4 ). The conformations of 3 and 4 in CDCl3 were determined on the basis of 1H‐ and 13C‐NMR spectroscopy.  相似文献   

6.
Reaction of bis(2‐pyridylmethyl) ether with [Mo(CO)3­(Me­CN)3] in MeCN gives the title compound, [Mo(C12H12‐N2O)(CO)3], (I), as a yellow crystalline product. Compound (I) has been characterized by 1H NMR and IR spectroscopy, and single‐crystal X‐ray crystallography. In contrast with other examples of low‐valent early transition metal complexes of ethers, the ether linkage of (I) appears relatively inert. Nevertheless, the weak donor property of the ether ligand is evidenced by a trans effect manifested as a short Mo—CO bond length for the carbonyl ligand trans to the ether ligand.  相似文献   

7.
Four 2,2′‐bisindolylmethanes (BIMs), a useful class of polyindolyl species joined to a central carbon, were synthesized using salicylaldehyde derivatives and simple acid catalysis; these are 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐6‐methylphenol, (IIa), 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐4,6‐dichlorophenol, (IIb), 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐4‐nitrophenol, (IIc), and 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐4,6‐di‐tert‐butylphenol, (IId). BIMs (IIa) and (IIb) were characterized crystallographically as the dimethyl sulfoxide (DMSO) disolvates, i.e. C26H24N2O·2C2H6OS and C25H20Cl2N2O·2C2H6OS, respectively. Both form strikingly similar one‐dimensional hydrogen‐bonding chain motifs with the DMSO solvent molecules. BIM (IIa) packs into double layers of chains whose orientations alternate every double layer, while (IIb) forms more simply packed chains along the a axis. BIM (IIa) has a remarkably long c axis.  相似文献   

8.
Jan Bergman   《Tetrahedron letters》2009,50(40):5631-5632
Base-induced cyclization of N′-cyanomethyl-N′-methylurea gives 1-methyl-4-amino-imidazol-2-one, this in turn is condensed with 3-hydroxy-2-phenylacrolein to yield an imidazo[4,5-b]pyridine which is converted into 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PHIP).  相似文献   

9.
Geissoschizine methyl ether N-oxide, a new oxindole alkaloid, along with 14 known alkaloids, was isolated from the aerial part of Uncaria rhynchophylla. Their structures were identified by comprehensive spectral methods, including 2D NMR experiments, and confirmed by comparing with the literature data. In vitro acetylcholinesterase (AChE) inhibitory activity assay showed that the new compound exhibited anti-AChE activity with IC50 value of 23.4 μM.  相似文献   

10.
The title compounds, N‐[5‐(4‐chloro­phenyl)­furan‐2‐yl­methyl]‐4‐methyl‐N‐(prop‐2‐ynyl)­benzene­sulfon­amide, (Ia), and N‐[5‐(2‐chloro­phenyl)­furan‐2‐yl­methyl]‐4‐methyl‐N‐(prop‐2‐ynyl)­benzene­sulfon­amide, (Ib), both C21H18ClNO3S, have isomorphous crystal structures. The crystal packing is mainly determined by intermolecular C—H?O and C—H?π interactions. These interactions are very similar in (Ia) and (Ib). Additional intermolecular C—H?Cl interactions appear less important and are different in (Ia) and (Ib). The different positions of the Cl atoms result in small variations of the crystal packing of the two compounds.  相似文献   

11.
Quinolone analogues I‐VI with pyridazino[3,4‐b]quinoxaline ring system were synthesized form the (l‐alkylhydrzino)quinoxalina N‐oxides 1 via oxidation of pyridazino[3,4‐b]quinoxalines 2,3,5,7 , quinoxalino[2,3‐c]cinnolines 4 , and 1,2‐dizepino[3,4‐b]quinoxalines 6 . The biological activities of quinolone analogues IVa (N1‐methyl‐C3‐methyl), Va (N1‐methyl‐C3‐ethyl), and VI (N1‐methyl‐C3‐H) were superior to those of quinolone analogues I (N1‐ethyl‐C3‐carboxyl), 26b (N1‐ethyl‐C3‐carboxylate), and IIIc,d [N1‐alkyl‐C3‐(CH2)3COOC2H5].  相似文献   

12.
From the feeding of young plants of Strychnos nux-vomica with [14C]-1-and [14C]-2-acetate it could be deduced that the C-atoms 22 and 23 were derived from acetate. [14C]-2-mevalonate, [14C]-2-geraniol and [14C]-2-geranyl pyrophosphate were also incorporated into strychnine. The distribution of radioactivity in the «mevalonate-strychnine» was in agreement with the monoterpenoid hypothesis. Feeding experiments especially with [14C]-tryptophane showed that the main production centre of the alkaloid lay in the roots and that only a small part of it was carried to the leaves. Tritium labelled WIELAND GUMLICH aldehyde as well as N(a)-[14C]-1-acetyl WIELAND GUMLICH aldehyde were not converted into strychnine by S. nux-vomica.  相似文献   

13.
In both title compounds, i.e. 3‐methyl‐1,5‐di­phenyl‐1,6,7,8‐tetra­hydro­pyrazolo­[3,4‐b][1,4]­diazepine, C19H18N4, (I), and 5‐(4‐chloro­phenyl)‐3‐methyl‐1‐phenyl‐1,6,7,8‐tetra­hydro­pyra­zolo­[3,4‐b][1,4]­diazepine, C19H17ClN4, (II), an N—H?N hydrogen bond links six mol­ecules to form an R(30) ring. Compound (I) crystallizes in the R space group and (II) crystallizes in P with three mol­ecules in the asymmetric unit. The mol­ecule of (I) contains a disordered seven‐membered ring.  相似文献   

14.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

15.
Treatment of methyl 2-(1-hydroxyalkyl)prop-2-enoates 1 with conc. HBr solution afforded methyl (Z)-2-(bromomethyl)alk-2-enoates 2 , which were transformed regioselectively into N-substituted methyl (E)-2- (aminomethyl)alk-2-enoates 3 (SN2 reaction) and into N-substituted methyl 2-(1-aminoalkyl)prop-2-enoates 4 (SN2′ reaction). Regiocontrol of nucleophilic attack by amine was accomplished simply by choice of solvent, the SN2 reaction occurring in MeCN and the SN2′ reaction in petroleum ether. Hydrolysis and lactamization afforded β-lactams 7 and 8 , containing an exocyciic alkylidene and methylidene group at C(3), respectively.  相似文献   

16.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

17.
Ecdysone ( 9 ), a hormone responsible for the skin shedding process of arthropoda, has been synthesized. (20S)-2β,3β-Diacetoxy-20-formyl-5β-pregn-7-en-6-one was prepared from the corresponding carboxylic acid and converted into ecdysone by a GRIGNARD reaction with 2-methyl-3-butyn-2-ol tetrahydropyran-2-yl ether, followed by hydrogenation of the triple bond, removal of the protecting groups, and hydroxylation in the 14α-position. C-22-isoecdysone was obtained as a by-product.  相似文献   

18.
α-Methylvinyl isobutyl and methyl ethers were polymerized cationically and the structure of the polymers was studied by NMR. Poly(α-methylvinyl methyl ether) polymerized with iodine or ferric chloride as catalyst was found to be almost atactic, whereas poly(α-methylvinyl isobutyl ether) polymerized in toluene with BF3OEt2 or AlEt2Cl as catalyst was found to be isotactic. In both cases, the addition of polar solvent resulted in the increase of syndiotactic structure as is the case with polymerization of alkyl vinyl ether. tert-Butyl vinyl ether was polymerized, and the polymer was converted into poly(vinyl acetate), the structure of which was studied by NMR. A nearly linear relationship between the optical density ratio D722/D736 in poly(tert-butyl vinyl ether) and the isotacticity of the converted poly(vinyl acetate) was observed.  相似文献   

19.
With the new semi‐rigid V‐shaped bidentate pyridyl amide compound 5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol‐κO)bis[5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κN]bis(thiocyanato‐κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] ( 1 ), and one two‐dimensional coordination polymer, catena‐poly[[[bis(thiocyanato‐κN)iron(II)]‐bis[μ‐5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κ2N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n ( 2 ), were prepared by slow evaporation and H‐tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray crystallography. The single‐crystal X‐ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1 , while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2 , with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two‐dimensional grid‐like network. Investigation of the magnetic properties reveals the always high‐spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally‐induced incomplete spin crossover (SCO) behaviour below 150 K in 2 , demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.  相似文献   

20.
A combinatorial chemistry approach has been used to synthesize an array of Schiff bases, five of which, namely N‐[(E,2E)‐3‐(4‐methoxy­phenyl)‐2‐propenyl­idene]‐3‐nitro­aniline, C16H14N2O3, (1a), N‐[(E,2E)‐3‐(4‐methoxy­phenyl)‐2‐propenyl­idene]‐4‐nitro­aniline, C16H14N2O3, (2a), N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐3‐nitro­aniline, C17H17N3O2, (1b), N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐4‐nitro­aniline, C17H17N3O2, (2b), and N‐{(E,2E)‐3‐[4‐(di­methyl­amino)­phenyl]‐2‐propenyl­idene}‐2‐methyl‐4‐nitro­aniline, C18H19N3O2, (3b), have been structurally characterized. A stack structure is observed for (1a) and (1b) in the crystal phase. Experimental and calculated molecular structures are discussed for these compounds which belong to a chemical class having potential applications as non‐linear optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号