首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibers were spun from the nematic phase of the copolymer of polyethylene terephthalate having 60 mol % of p-oxybenzoate units. A capillary rheometer was used for spinning with a shear rate at the wall of 6.4 sec?1, and capillary (length/diameter) ratio of 14.1. The spinning temperature was varied from 250° to 300°C and, at each temperature, the spin-draw ratio was examined as a variable. Spinning was performed under two conditions. When spinning from the melt without preheating, the initial modulus of the fibers increased with spin-draw ratio and increased with increasing spinning temperature for a fixed spin-draw ratio. In the second case, the melt was preheated and then cooled to the desired temperature before spinning the fibers. The preheating temperature was 280°C for spinning at 250°C, and 300°C for spinning at 280°C. Preheating increased the fiber modulus to the value obtained by spinning at the preheating temperature. A reduction of the viscosity due to the melting of poly(p-hydroxybenzoic acid) (PHB) crystallites produces better orientation and higher modulus. However, with increasing spin-draw ratio, the modulus of the preheated fibers decreased to the values expected for the spinning temperature. This decrease in modulus is due to recrystallization of PHB in the threadline.  相似文献   

2.
Mechanistic investigations on the polymerization of N-methyl-N-allylmethacrylamide (MAMA) at lower temperature were carried out based upon the ESR studies of MAMA and its monofunctional counterparts irradiated with 60Co γ rays. Cyclopolymerizability of MAMA was also studied in connection with the hindered rotation about its amide C? N bond. The propagating radical observed is only related to the methacryl group but not to the allyl group both in MAMA and its monofunctional counterparts. Polymerization at ?78°C yielded a polymer with a lower degree of cyclization(88.8%) as compared with that of polymers formed at higher temperatures (93.5% above 0°C). A structural study revealed that the increment of the unsaturation in the poly-MAMA obtained at ?78°C is due to the allyl group and the content of pendant methacryl group is almost unchanged over the temperature range from ?78 to 120°C. These results led to the conclusion that the polymerization of MAMA at ?78°C proceeds mainly through the methacryl group, the rate-determining step is the cyclization reaction, and, in addition, cyclization reaction scarcely occurs when it polymerizes through the allyl group. Since MAMA is frozen into a glassy state, the effect of glass transition temperature (Tg) has been studied and it was suggested that the polymerization of MAMA proceeds only above Tg.  相似文献   

3.
The effect of temperature on the four-center type photopolymerization has been investigated for p-phenylenediacrylic acid diethyl ester over a wide temperature range including crystal transition point (56°C) and melting point (96°C) of monomer. With the elevation of temperature between ?50 and 15°C, the polymerization rate in the initial stage increased and the degree of polymerization decreased monotonously, while the rate in the later stage decreased above ?25°C. With irradiation at above 25°C, the monomer crystals became sticky, and the polymerization was suppressed at the stage of oligomerization with low conversion. This tendency was enhanced above the crystal transition point, giving mainly dimer in low yield. Above the melting point, only radical polymerization occurred with the aid of oxygen. The steric configuration of the products in the crystalline state was 1,3-trans with respect to the cyclobutane ring. Peaks in NMR spectra of all products were assigned to the protons involved in four compounds up to tetramer. Various results obtained have been interpreted in terms of the change, as a function of temperature, from a topochemical polymerization which proceeds under a control of the monomer lattice to a photoinitiated vinyl-type polymerization in the disordered state. It is concluded that a rigid crystal lattice is indispensable for the four-center type photopolymerization to proceed smoothly.  相似文献   

4.
The effect of temperature on the polymerization of diallyl phthalate was investigated in the temperature range of 80–150°C. The degree of polymerization increased slightly with temperature up to 100°C and then decreased; together with the results of primary chain length and the dependence of Rp on initiator concentration, these findings were interpreted in terms of the enhancement of the reinitiation ability of the allylic radical produced by the intramolecular chain-transfer reaction and of the reactivity of the cyclized radical at elevated temperature. The tendency for cyclization became more marked with increasing temperature. The gel point was almost unaffected.  相似文献   

5.
Films of uniaxially oriented poly(ethylene terephthalate) (PET), M v = 81,000, have been drawn by solid-state coextrusion in the range 40–100°C surrounded by polyethylene. This is well below the PET melting temperature and in some cases below its glass transition temperature. Properties of the extrudates, such as degree of crystallinity, mechanical and thermal properties, were investigated as a function of coextrusion temperature and draw ratio (EDR ≤ 4.4). The results show that the percent crystallinity depends strongly on draw ratio, whereas its sensitivity to extrusion temperature is limited only to the highest draw ratio (4.4). On the other hand, Young's modulus was sensitive to both extrusion temperature and draw ratio, exhibiting a maximum at EDR = 4.4 and Text = 65°C. Above this temperature, moduli decrease apparently because of increased chain mobility, resulting in dissipation of chain orientation. Furthermore, changes in yield and tensile strength followed the changes in mechanical properties, suggesting that they are dominated by the same factors. The cold-crystallization temperature TCC also revealed information about the morphological changes occurring during the extrusion drawing. For samples of EDR = 4.4, TCC increased with extrusion temperature, suggesting again dissipation of orientation by thermal motions. On the other hand, TCC decreases with EDR, and a ΔTCC as high as 73°C was found. Conventional drawing of amorphous PET has been widely reported. To our knowledge this is the first time oriented PET has been prepared using the advantages of solid-state coextrusion.  相似文献   

6.
A novel slurry reactor was used to investigate the copolymerization behavior of ethylene and 1-butene in the presence of 1 wt % Cr on Davison silica (Phillips-type) catalyst over the temperature range of 0–50°C, space velocity of about 0.0051 [m3 (STP)]/(g of catalyst) h, and a fixed ethylene to 1-butene feed mole ratio of 95 : 5. The effect of varying the ethylene to 1-butene feed ratios, 100 : 0, 96.5 : 3.5, 95 : 5, 93 : 7, 90 : 10, 80 : 20, and 0 : 100 mol/mol at 50°C was also studied. The addition of 1-butene to ethylene typically increased both copolymerization rates and yields relative to ethylene homopolymerization with the same catalyst, reaching a maximum yield for an ethylene: 1-butene feed ratio of 95 : 5 at 50°C. The incorporation of 1-butene within the copolymer in all cases was less than 5 mol %. The average activation energy for the apparent reaction rate constant, ka, based on total comonomer mole fraction in the slurry liquid for the ethylene to 1-butene feed mole ratio of 95 : 5 in the temperature range of 50–30°C measured 54.2 kJ/mol. The behavior for temperatures between 30 to 0°C differed with an activation energy of 98.2 kJ/mol; thus, some diffusion limitation likely influences the copolymerization rates at temperatures above 30°C. A kinetics analysis of the experimental data at 50°C for different ethylene to 1-butene feed ratios gave the values of the reactivity ratios, r1 = 27.3 ± 3.6 and r2 ≅ 0, for ethylene and 1-butene, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
DSC and IR data on benzyldimethylamine-catalyzed dicyandiamide-DGEBA prepolymer system have been utilized to investigate the influences of temperature and composition on the curing mechanism. Etherification as a competitive reaction is favored at lower temperature. On the other hand, the reaction pathway of dicyandiamide (DDA) varies with temperature, especially at the first stage of reaction. At 100°C, the reaction of DDA is shown to be essentially the substitution of the hydrogen atoms by ring-opening of epoxy groups, giving rise to N-alkyl cyanoguanidine. But at 140°C or 160°C, the initial reaction of DDA involves a transformation of nitrile groups to imine groups. A greater amount of BDMA and a higher amine-to-epoxy ratio favor the etherification. The glass transition temperature Tg is a complex function of these different mechanisms; higher Tg could be reached with a amino-to-epoxy ratio equal to 0.6 and after a curing cycle including a precure at 100°C.  相似文献   

8.
Dilatometric, calorimetric, and dissolution studies have been made of two crystalline modifications of trans-1,4-polyisoprene in order to determine their equilibrium melting temperatures. This parameter is of fundamental importance in the formal treatment of polymorphism in crystalline polymers. A consistent set of thermodynamic parameters has been derived for both crystalline modifications. The equilibrium melting temperature of the polymorph, which was previously observed to melt from carefully crystallized bulk material at 64°C, was calculated to be at least 82.4°C. The other form, which melts from the bulk at 74°C, has an equilibrium melting temperature of 79.5 ± 0.5°C. The trans-1,4-polyisoprene, crystallized by stirring n-butyl acetate solutions at 49°C, was found by x-ray diffraction to be in the first form and melts at 81.2 ± 0.5°C when very slow heating rates are applied. This melting temperature is very close to the independently derived equilibrium melting temperature and lends support to the possibility that extended chain crystals are present in these solution crystallized crystals. Using the newly found melting temperatures of the two crystalline modifications it can be derived from the free energies of fusion that the first crystalline form is more stable at temperatures above approximately 66°C, whereas the other form is more stable below this temperature.  相似文献   

9.
A novel performance matrix, coded as LCRTM, with low cure and post‐cure temperature (≤ 200°C) for fabricating advanced polymer composites via resin transfer molding (RTM), was successfully developed, made up of 4,4′‐bismaleimidodiphenylmethane (BDM) and N‐allyl diaminodiphenylether (ADDE). Investigations show that the stoichiometry of BDM and ADDE has great effect on the processing and performance parameters of the resultant resins. In the case of the optimum formulation (the mole ratio of BDM and ADDE is 1:0.55), the injection temperature range is between 70–82°C, and the pot life at 80°C is 300 min, moreover, the cured resin has desirable thermal and mechanical properties after being cured at 200°C for 6 hr, reflecting a great potential as high performance matrices for fabricating advanced composites via the RTM technique. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The drawing behavior of linear polyethylene homopolymers with weight-average molecular weights (M?w) from 101,450 to ca. 3,500,000 has been studied over the temperature range 75°C to the melting point. In all cases 1-cm gauge length samples were drawn in an Instron tensile testing machine at a constant cross-head speed of 10 cm/min. With the exception of the lowest molecular weight polymer, it was found that increasing the draw temperature led to substantial increases in the maximum draw ratio which could be achieved, and that this increased monotonically with increasing draw temperature. Measurements of the Young's modulus of the drawn materials showed, however, that the unique relationship between modulus and draw ratio previously established for drawing at 75°C was not maintained to the highest draw temperatures. The highest draw temperature at which this relation held was found to be strongly molecular weight dependent, increasing from ca. 80 to ca. 125°C when M?w increased from 101,450 to 800,000. In all cases conditions could be found for drawing samples to draw ratios of 20 or more with correspondingly large values of the Young's modulus.  相似文献   

11.
The effects of drawing temperature on the physical and mechanical properties of poly(p-phenylene sulfide) have been studied. A melt-quenched film was drawn by solid-state coextrusion both below (75°C) and above (95 and 110°C) the glass transition temperature Tg (85°C) of PPS. The maximum extrusion draw ratio (EDRmax) increased from 3.4 to 5.6 with increasing extrusion temperature Te from 75 to 110°C. It was found that extrusion drawing just above the Tg of PPS (95°C) produced more stress-induced crystals. A high efficiency of draw in the amorphous region was achieved by extrusion at Te-75°C. The tensile modulus at EDRmax decreased from 5.1 to 3.5 GPa with increasing Te from 75 to 110°C. The low efficiency of draw for the samples extruded at 110°C is explained in terms of disentanglement and chain slippage during drawing due to a less effective network.  相似文献   

12.
The kinetics of radical polymerization of methyl methacrylate were investigated in a dioxane solution with cyclohexanone as initiator. It was found that the overall rate of reaction initiated with cyclohexanone (Rp) is proportional to the concentration of monomer and to the square root of the concentration of the initiator. The effect of temperature on the Rp in the temperature range of 65–95°C was discussed. The Arrhenius activation energy Ea estimated for the temperature range of 65–75°C was 137 kJ mol?1.  相似文献   

13.
A process for the chemical modification of polybutadienes and natural rubber by various metallocene compounds is described. Soluble products of up to 43% ferrocene content were obtained. The effect of substrate, metallocene, and reaction conditions on the course and extent of substitution was investigated. The glass transition temperature Tg was found to increase considerably with the degree of substitution, e.g., cis-polybutadiene substituted with ferrocene (18 mole-%) has a Tg of 30°C, as compared with ?91°C for the unsubstituted polymer.  相似文献   

14.
A novel low‐temperature curing polytriazole resin was prepared from a triazide and a tetraalkyne and characterized. The resin can be cured at 70°C. The glass transition temperature Tg and thermal decomposition temperature Td5 of the cured resin with the molar ratio of azide to alkyne group [A]/[B] = 1.0:1.0 reached 324 and 355°C, respectively. The study on the curing kinetics of the resin shows that the apparent activation energy of the curing reaction is 93 kJ mol?1. The flexural strength of the cured resin reached 137.6 MPa at room temperature and 102.6 MPa at 185°C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Radical copolymerization of N-(2-hydroxyethyl) carbazolyl acrylate (HECA, M1) with 2,4-dinitrophenyl methacrylate (DNPM, M2) can be described by a simple terminal mechanism having the relative reactivities r1 = 0.14, r2 = 1.10 (at 60°C); 0.28, 0.96 (80°C); and 0.41, 0.79 (100°C), respectively. The dependence of the reactivity ratio values on copolymerization temperature, analyzed by Arrhenius equation, takes place mainly through the frequency factor. The copolymers obtained are intramolecular charge transfer complexes. The intramolecular interaction is evidenced by the shift of the aromatic protons from the DNPM structural unit in the copolymers' 1H-NMR (nuclear magnetic resonance) spectra. This shift depends on sequence distribution and chain conformation, but is not affected by the copolymerization temperature.  相似文献   

16.
The polymerization of 2-ethylhexyl acrylate (EtHA) initiated with lithium-tert-butoxide (t-BuOLi) in tetrahydrofuran (THF) and in the temperature range between ?60 and 20°C was investigated. The reaction rate is distinctly temperature-dependent and at ?60°C is already very low, similarly to the polymerization of methacrylates. Molecular weights of the polymers thus formed, particularly at higher temperatures, are inversely proportional to conversion of the monomer due to the slow initiation reaction. This is documented by the low consumption of alkoxide even at long reaction times, which also depends on the reaction temperature. At higher temperatures the polymerization stops spontaneously, due to the greater extent of autotermination reactions. The weak initiating efficiency of the alkoxide decreases still more with decreasing concentration of the monomer during the polymerization, as confirmed by the concentration dependence of the reaction rate in toluene at ?20°C. The results suggest a negligible initiating effect of alkoxides in complex bases, particularly at lower polymerization temperatures. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
Poly(chloro-p-xylylene) was synthesized in a manner similar to poly(p-xylylene) using Gorham's method at various cryogenic temperatures. The effect of the sublimation rate of dimer on the kinetics of deposition, crystallinity, and crystalline structure was studied. Increasing the sublimation rate of the dimer increases the deposition rate similar to that of poly(p-xylylene). However, an increase in crystallinity, in contrast to Parylene N, is observed, although, in general, Parylene C has lower crystallinity relative to Parylene N. No polymorphism is observed either by decreasing the deposition temperature or by increasing the sublimation rate of the dimer. Solution annealing and isothermal annealing both bring about crystallization without any structural transformation. Solution annealing removes the oligomers and dimers, but no crystalline oligomers are ever detected under the scanning electron microscope (SEM). The surface topology of films synthesized from ambient temperature to ?40°C is very similar to Parylene N. At lower temperatures, in the region ?50 to ?60°C, a rod-type morphology is observed similar to Parylene N. The surface topology of samples synthesized at ?196°C is totally different from that of Parylene N. All low temperature synthesized samples are amorphous.  相似文献   

18.
The effect of stretching on the thermal behavior of acrylic fibers was investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and Fourier transform infrared spectroscopy (FTIR). In air atmosphere, the peak temperature of the dynamic DSC thermogram was significantly lowered from 289 to 273 °C when the gel fibers (undrawn) were drawn to a draw ratio of 11.2. However, the initiation temperature was unchanged at 202 °C. The shoulder in the region of 310–380 °C was gradually converted to a sharp peak during the drawing process. However, the dynamic DSC in nitrogen atmosphere did not change in all cases. In air atmosphere the total heat liberated, ΔH, for gel fiber was 851 J g?1. However, upon drawing to 11.2, ΔH increased to 1580 J g?1 showing an increase in the total chemical changes. An intimate relationship of chemical changes during the heating process was observed with FTIR of heated samples at various temperatures. The initiation of a DSC exotherm in air begins with nitrile cyclization, and subsequently dehydrogenation was initiated between 220 and 260 °C. An increase in the X‐ray orientation factor and sonic modulus gave a correlation between the stretching draw ratio and crystalline/overall molecular orientation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2949–2958, 2003  相似文献   

19.
Measurements of the small-angle scattering power and the degree of crystallinity in melt-crystallized high-density polyethylene have been used to evaluate the “amorphous” density in situ by the relation, where V is the irradiated volume and ?(S) is the “slit-smeared” absolute intensity. The amorphous density is a function of sample history and is always higher than the extrapolated melt density. After slit-height correction, and within the experimental error, the ratio of the two observed long periods is 2:1 at all temperatures (25--126°C). The lamellar thickness and the average interlamellar spacing are obtained from the degree of crystallinity and the first corrected long period. At increasing temperatures between 25°C and 110°C, the lamellae become thinner while the interlamellar zone expands by almost half. Over this range the changes are reversible with temperature. Above 110°C, both the lamellae and the interlamellar region expand with temperature. The thickening is partially reversible upon recooling. Other results obtained include measurements of stacking disorder and of microstructural changes with crystallization temperature and with time at ambient temperature.  相似文献   

20.
Preparatory for the synthesis of terminally functional polyisobutylenes carrying one or two phenyl end groups, model experiments have been carried out using novel tert-butyl chloride/triphenylaluminum and 2,6-dichloro-2,6-dimethylheptane/triphenylaluminum initiating systems. As anticipated, t-BuCl was phenylated by ø3Al and the product is tert-butylbenzene. The reaction is extremely rapid and temperature has little effect on it in the 0 to ?60°C range. The interaction between the 2,6-dichloro-2,6-dimethylheptane and ø3Al was found to be complicated by a proximity effect which leads to proton elimination in addition to phenylation. The formation of the desired diterminally phenylated product is not quanititative even at ?60°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号