首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal degradation of an aromatic polyamide was studied under conditions of pyrolysis and oxidative degradation at 550°C and of flaming combustion. Techniques described elsewhere were used to determine the volatile compounds quantitatively by gas chromatography-mass spectrometry (GC–MS). The condensible material and the solid residue were characterized by infrared spectroscopy and MS, and in pyrolysis experiments 28 compounds were identified (CO, CO2, H2O, and C6H5CN were the primary products). Collectively, these compounds accounted for 79% of the sample weight loss. The remaining 21% was a condensible material that contained at least 17 compounds; the two major components were 1,3-dicyanobenzene and 3-cyanobenzoic acid. Most of the nitrogen content of the polymer remained as involatile residue. This study was sufficiently detailed to obtain a mass balance between the composition of the original polymer and the sum of the observed pyrolysis products. The major products observed in pyrolysis experiments supported a mechanism that involved the cleavage of an aromatic-NH bond and the loss of H2O to form aromatic nitriles. Hydrolysis of the amide linkage, followed by decarboxylation of the product acid, accounted for the high concentrations of CO2 observed. Oxidative degradation at 450°C yielded ten identifiable compounds and an additional 19 volatile compounds were formed at 550°C. The condensible fraction, which contained at least 20 compounds, was similar in composition to the fraction collected from the pyrolysis experiments. The sum of the carbon content from the two major volatile products of oxidative degradation (CO and CO2) and from the solid residue quantitatively accounted for the carbon content in the original sample. Flaming combustion studies revealed a markedly different product distribution than was observed under nonflaming conditions, especially in regard to the higher-molecular-weight species.  相似文献   

2.
IR laser-induced degradation of poly(ethylene terephthalate) (PET) was studied under different irradiation conditions and the ablated volatile and solid products were characterized by mass and infrared spectroscopy, gel-permeation chromatography, thermogravimetry and electron microscopy. The observed volatile products (carbon oxides, H2, C1-2 hydrocarbons, acetaldehyde, benzene and toluene) and less-volatile aromatic compounds are typical products of thermal degradation of PET. The ablatively deposited solid materials are a blend of soluble, structurally similar oligomers and of an insoluble polymer containing carbonyl groups bonded in a -C(O)OH arrangement. Thermal degradation of these deposited solids is controlled by decomposition of sublimed fractions and is easier than that of PET.  相似文献   

3.
The thermal degradation of poly(vinylfluoride) (PVF) was studied under slow heating conditions to 1000°C with and without the presence of air. The degradation products, classified as low-boiling volatiles, high-boiling volatiles, and nonvolatile residues, were analyzed quantitatively by gas chromatography—mass spectrometry and several spectroscopic methods. Initial stages of degradation begin at 420°C with the evolution of HF and benzene and rapidly reach a maximum in sample weight loss by 450°C. One-third of this weight loss was in the form of hydrofluoric acid (HF) and at least 70 low-boiling volatile compounds that consisted of substituted aromatics, unsaturated hydrocarbons, and multiple-ring compounds, many of which contained a fluorine atom. The high-boiling volatile fraction contained compounds with more aliphatic but less aromatic character than the low-boiling. The nonvolatile residue retained 4% of the original fluorine content and exhibited strong unsaturated character. In the presence of oxygen HF, CO, and H2O were the major constituents of the low-boiling volatiles; the organic fraction was essentially unchanged in composition but reduced in overall concentration. The overall weight-loss process was bimodal in air and produced a thermally resistant residue that degraded by 650°C. A comparison of degradation products from poly(vinylchloride) with this work demonstrates that PVF forms more lower-molecular-weight, halogen-containing compounds, whereas the former produced more HCl and nonvolatile residue containing a lower halogen content.  相似文献   

4.
The thermal degradation of polytetrafluoroethylene (PTFE) and tetrafluoroethylene/hexafluoropropylene copolymer (FEP) has been investigated in different gas atmospheres by simultaneous thermogravimetry—mass spectrometry, pyrolysis—gas chromatography, combined gas chromatography—mass spectrometry, and IR analysis.There are no significant differences in the decomposition products of the two polymers in helium or air at a temperature range of 450–790°C; C1 to C8 fluorocarbons and their oxidized products have been identified. The various fluorocarbons produced are plotted against the degradation temperature, and at temperatures of 450–550°C FEP evolves large amounts of tetrafluoroethylene formed by a decomposition reaction of perfluoropropylene.From the traces of the TG-MS in an atmosphere of helium, the FEP clearly decomposes in two stages. The first stage degradation is mostly attributed to the evolution of perfluoropropylene with a small amount of perfluoro-1-butene or perfluoroisobutylene, and possibly traces of perfluorocyclobutane. Tetrafluoroethylene is evolved with these fluorocarbons at the second stage degradation, showing similar characteristics of the degradation mechanisms of FEP at the two stages. In the presence of air, the two polymers also decompose in two stages. Activation energies for the degradation products are calculated, and the decomposition mechanisms of the polymers are discussed with the results of IR analysis.  相似文献   

5.
The stepwise thermal degradation of a polybenzimidazole (PBI) foam, prepared from 3,3′-diaminobenzidine and isophthaldiamide, has been studied under conditions of pyrolysis and nonflaming oxidative degradation in a thermal analyzer using gas and liquid chromatographic separation and mass spectrometric and infrared detection techniques. The recoveries of sample weight, as degradation products, were quantitative over the entire temperature ranges studied (100–300, 300–570, 570–700, and 700–1000°C for pyrolysis; and 100–570 and 570–900°C for nonflaming oxidation). In pyrolysis, 17 volatile compounds were identified with NH3 and CH4 accounting for 94 and 57 mole % of the total mass loss between 300–570 and 570–700°C, respectively. Above 700°C, HCN and H2 were formed from degradation of arylnitrile-containing oligomers. The thermal and oxidative degradation of three substituted benzimidazole monomers was also studied, and the relative ratios of N2, NH3, and HCN that were produced from each, when compared with PBI, support a mechanism for degradation that favors cleavages that least alter the conjugation of the polymer backbone. In the presence of air, PBI formed stable oxygen-containing residues that decomposed at high temperatures to N2, CO2, and H2O almost exclusively. Large quantities of H2 and N2 from model compounds support results from PBI that suggest that degradation begins with total erosion of the imide ring at 570°C and the formation of more condensed heterocyclic species. These quantitative techniques are generally applicable to the study of all polymeric materials.  相似文献   

6.
We describe the degradation of tributyltin chloride by several strains of fungi, yeasts and bacteria under resting-cell conditions in phosphate buffer, with low initial concentrations of substrate. Yields of biotic conversion of tributyltin ranging from 10 to 77% were observed after a five-day incubation at 28°C. In most cases, dibutyltin and monobutyltin compounds and a fraction of volatile products were formed. Volatile tin compounds essentially included derivatives of monobutyltin and traces of other organomethyltins (mono-, di-, and trimethyltins; di- and tri-butyltins), probably as the corresponding organostannanes. Compared with conditions in which the substrate was incubated with growing microorganisms, higher yields of degradation and substantial amounts of volatile products were obtained.  相似文献   

7.
The aim of this study is to evaluate the thermal stability and thermal degradation behavior of an epoxy network based on bisphenol A modified with silver sulfathiazole and crosslinked with ethylenediamine. The sample was studied by thermogravimetric analysis coupled with differential scanning calorimetry over a range of temperature between 30 and 600 °C in N2 atmosphere and using heating rates of 5, 10, 15 and 20 °C min−1. The kinetic parameters of thermal degradation process were calculated. Fourier transforms infrared spectroscopy and mass spectroscopy coupled to thermogravimetry was used to identify the volatile products resulting from the degradation of the network. The study showed that the sample is stable up to temperatures exceeding 290 °C. The major degradation volatile products identified were: ammonia, water, carbon dioxide and compounds with aromatic structure such as bisphenol A and its degradation products.  相似文献   

8.
The reaction between roasted serpentine ore and ammonium sulfate was studied at the range of temperature 250–1000°C using different molar ratios to determine the maximum extraction of magnesia and also to characterize the different reaction products. The maximum extraction of MgO from the roasted ore reached 92.4% at 400°C. It was found from XRD that ammonium magnesium sulfate [(NH4)2Mg2(SO4)3] was produced as the main product at 400°C, which decomposes to magnesium sulfate at 500–600°C. The last compound decomposes to magnesium oxide at 900–1000°C. Thermal analysis of the reaction mixture confirmed the results obtained by XRD. Extraction of magnesia by ammonium chloride at 300–400°C showed low percentage of extraction (7.8%). Comparison was made between using ammonium chloride instead of sulfate taking into consideration the thermal decomposition products of both ammonium salts. Extraction of magnesia from the roasted ore by aqueous ammonium sulfate or ammonium chloride showed good results.  相似文献   

9.
Oxidative thermal degradation products of polyethylenes at various temperatures crosslinked with electron beams have been analyzed with gas chromatography and mass spectrometry techniques. Carbon monoxide and carbon dioxide are determined at a temperature range of 200–340°C, and the activation energies of the unirradiated and the irradiated polyethylene (at 100 Mrad) are 13.5 and 11.4 Kcal/mole, respectively. C1 to C8 hydrocarbons produced in air and in nitrogen are determined at temperatures from 400 to 450°C for the polyethylenes. The irradiated polyethylene produces less hydrocarbons in air than the unirradiated polyethylene, contrary to the fact that the crosslinked polymer evolves more hydrocarbons than the unirradiated polymer in a nitrogen atmosphere. Aldehydes and ketones are observed in the volatile oxidative degradation products, and these carbonyl compounds increase quantitatively with increase of temperature up to about 460°C. It is concluded that irradiated polyethylene is thermally more unstable in the absence of oxygen and more easily oxidable at low degradation temperatures in air than unirradiated polyethylene. Irradiated polyethylene, however, is more heat-stable than unirradiated polyethylene from the standpoint of the ignition process.  相似文献   

10.
A novel method for the continuous monitoring of thermooxidative degradation products of polystyrene by membrane extraction with sorbent interface (MESI) and gas chromatography (GC) is developed. The results are compared with solid-phase microextraction-GC, which can extract gases, vapors, and aerosols. The volatile and semivolatile degradation products are identified by mass spectrometry. The membrane used in the MESI-GC analysis shows a high permeation for volatile aromatic hydrocarbons; a low permeation for corresponding volatile aldehydes; and no permeation for less volatile alcohols, acids, and degradation products with a high molecular weight, thus reducing significantly the number of compounds detected from MESI-GC. Sensitivity of the method depends on the time of trapping, which is limited by the breakthrough of the trap. By heating the trap at fixed intervals of time, consecutive gas chromatograms are obtained.  相似文献   

11.
2,4,6-三芳基吡啶的微波辐射促进合成   总被引:1,自引:0,他引:1  
吴萍  蔡习美  颜朝国 《应用化学》2006,23(12):1377-0
微波辐射;查尔酮;缩合反应;吡啶;叶立德  相似文献   

12.
Investigations of the pyrolysis of poly(vinyl chloride) (PVC) in the presence of copper metal (Cu), copper(II) oxide (CuO) and copper(II) chloride (CuCl2) are of potential importance because of the likelihood of the formation of these copper compounds during the thermal degradation of PVC-coated copper wires, a step in the recovery of copper from waste. The presence of Cu, CuO and CuCl2 (i) retards the thermal degradation of PVC in air and in nitrogen and (ii) decreases the percentages of volatile products produced at both stages of the decomposition. These effects are greatest for PVC-CuO. The presence of copper, CuO or CuCl2 in PVC has a major effect on the nature of the gaseous emissions of the thermal decomposition in air and in nitrogen. The concentrations of total chlorine, aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons and soot particulates are all affected relative to an equivalent amount of PVC. These changes are greatest for the PVC-CuO system for which total chlorine emissions in air and nitrogen are reduced by 40% in air and 20% in nitrogen, benzene emissions are reduced by greater than 90% in air and nitrogen, other aromatic and chloroaromatic emissions are reduced, and soot particulate emissions are reduced by more than 50% as the concentrations of aliphatic compounds are increased. These changes are consistent with the presence of copper or its compounds permitting more efficient combustion of the carbon content of the PVC and particularly in the case of PVC-CuO with the removal of chlorine during pyrolysis in the inorganic phase.  相似文献   

13.
A systematic investigation of the thermal stability of nine structurally related polyquinoxalines has been conducted. The relative oxidation resistance of these polymers is controlled by two opposing structural effects. Phenyl sidegroup substitution in the heterocycle greatly improves oxidative stability, while the introduction of oxygen into the main polymer chain, in the form of ether groups, produces a negative effect of equal magnitude. These results are discussed from a mechanistic point of view. Simultaneous, dynamic thermal analysis in vacuum up to 1400°C and analysis of volatile and nonvolatile products indicates three major decomposition regions. Between 500 and 640°C, main polymer degradation takes place involving the heterocycle. This event is followed by dehydrogenation of a stable degradation product between 640 and 690°C. Above 1360°C an exothermic reaction takes place to yield highly condensed aromatic residues.  相似文献   

14.
The reaction of fullerene C60, single- and multi-walled carbon nanotubes (SWNTs and MWNTs, respectively), as well as a mixture of these carbon nanomaterials with 8–10 wt% of ammonium chloride (reaction promoter) with ammonia as a source of hydrogen and nitrogen, at an initial ammonium pressure of 0.6–0.8 MPa in the temperature range 20–550°C was studied. The reaction at 450°C is accompanied by hydrogenation and nitrogenation of the fullerite matrix, and at 500°C decomposition of the fullerene carcass occurs. Physicochemical properties of the hydride-nitride phases formed by the reaction were studied. Single- and multiwalled nanotubes were shown to be stable in an ammonium medium at 20–450°C, while at 500°C their ends are opened.  相似文献   

15.
The photo-oxidation of PVC has been studied over the temperature range 30–150°C. Initiation with ultraviolet (2537A) radiation has been correlated with the presence of minute amounts of ozone. The contribution of atomic oxygen and singlet oxygen (1Δg) molecules to the initiation mechanism is discussed. The β-chloroketones probably formed in the photo-oxidation of PVC, decomposed according to a Norrish type I reaction without loss of chlorine atoms. The gaseous products of the photo-oxidation of PVC at 30°C were carbon dioxide, carbon monoxide, hydrogen, and methane. Hydrogen chloride was obtained only when PVC was heated at high temperatures. When PVC was photo-oxidized and then heated at high temperature, benzene was obtained in addition to hydrogen chloride. The gaseous products from the photo-oxidations of model compounds, such as 4-chloro-2-butanone and 2,4-dichloropentane, were also compared with those from PVC. Hydrogen chloride was detected only after photo-oxidation at temperatures of 25°C or higher. Therefore, it was concluded that hydrogen chloride is mainly a product of thermal decomposition. Since unsaturation was not observed in photo-oxidized PVC films, the cause of discoloration is unclear. When PVC was modified by stabilizers or additives, the oxidative degradation was further complicated by side reactions with the additives.  相似文献   

16.
The influence of the nature of molybdenum compounds on the catalytic activity of sulfided NiMo/γ-Al2O3 catalysts was studied. The samples were prepared by impregnating the support with mixed aqueous solutions of nickel nitrate and molybdenum-containing compounds: ammonium paramolybdate and the 6-series heteropoly compounds (HPCs) ammonium 6-molybdonickelate (NiMo6-HPC) and ammonium 6-molybdoaluminate (AlMo6-HPC). Complexing agents (tartaric acid or a solution of NH3) were used for stabilizing mixed aqueous ammonium paramolybdate and nickel nitrate solutions and for simultaneously producing an acidic or alkaline medium. The starting molybdenum compounds and catalysts in the oxide form were characterized using IR spectroscopy and x-ray diffraction analysis. The activity of catalysts based on NiMo6-HPC in the hydrogenolysis of thiophene and in the hydrotreating of the diesel fraction was higher than that of catalysts based on ammonium paramolybdate: at 320°C, the degree of sulfur removal from the diesel fraction was higher by 13–16% and the average degree of hydrogenation of polycyclic aromatic hydrocarbons was higher by 14–15%. It was also found that the use of AlMo6-HPC does not cause such an effect.  相似文献   

17.
This investigation involves an experimental study on the pyrolysis of scrap tires under different operating conditions such as feedstock size and pyrolysis temperature by highlighting the properties of the whole liquid products generated during each thermal degradation process. The complete conversion temperature for the pyrolysis of used tires was close to 500?550°C. The characteristics of liquid fraction were determined by elemental analysis, chromatographic and spectroscopic techniques and distillation data. All the obtained atomic ratios are around 1,4 which is significant that such pyrolytic liquids are a mixture of aliphatic and aromatic compounds derived from polymeric materials. Analysis of the pyrolytic oil (pyro-oil) by chromatographic analysis showed that it was a complex mixture of organic compounds C5?C26, aromatics and a large proportion of light hydrocarbons that can be used as liquid fuels. Furthermore, the comparison distillation data indicates that more than 40% of such pyrolytic oil fraction with the boiling point range between 180?360°C is specified for diesel. It is noted that the viscosity decreases obviously from 4.87 to 1.79 with the increase in temperature.  相似文献   

18.
The formation of various chlorinated products in pyrolysis of polymers and plastics additives was studied. Formation of chlorobenzenes (in addition to the monomers) from poly(chlorostyrene) and poly(vinylbenzyl chloride) was observed. Hydrogen chloride is only produced from these polymers at above 600 °C when the chlorine atoms are cleaved off and abstract hydrogen. A similar process takes place in aromatic chlorine-containing dyes, in which the strong aromatic molecular structure prevents the thermal cleavage of chloroaromatic volatile products. We have observed that cupric and ferric chlorides chlorinate phenolic thermal decomposition products of plastic materials which originate either from the polymer or from the stabilizer. The highest yields of chlorophenols are obtained in pyrolysis at around 700 °C.  相似文献   

19.
The thermal degradation of synthetic waterborne polyurethane (PU) based on toluenediisocyanate (TDI) was investigated by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetry (TG). The degradation profiles of cast films obtained from dispersions were evaluated. More than 20 characteristic volatile pyrolyzates reflecting the structure and pyrolysis mechanisms of the polymer have been identified by on-line MS. The synthesized products of polyurethane were pyrolyzed at 350, 450, 550, 650 and 750 °C respectively, and the analysis results revealed that the pyrolyzates distribution of the polyurethane depends strongly on the pyrolysis temperature. The aqueous polyurethane thermogravimetric measurements were used to study the kinetics of thermal degradation.  相似文献   

20.
The products of reactions induced by IR heating in the copper acetate hydrate-polyacrylonitrile system and the intermediate Cu compounds formed during the preparation of Cu nanoparticles were studied by powder X-ray diffraction, atomic absorption spectroscopy, mass spectrometry, and IR spectroscopy. Mass spectra of the volatile products formed from the nanocomposite contain peaks typical of the CuCO molecular ion. After treatment of the nanocomposite at 500°C, the copper content in the composite decreased 10-fold as a result of evolution of volatile CuCO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号