首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A viscometric determination of the degree of branching γ, of poly(methyl methacrylate) obtained by anionic polymerization proved the reaction of the growing center of poly(methyl methacrylate) with the ester group of another polymer molecule, accompanied by the formation of a trifunctional branch point. This reaction occurs if the solution polymerization of methyl methacrylate is initiated: (1) with butyllithium at ?78°C only on attaining 100% conversion and after a long time or at +20°C immediately after the polymerization has set in; (2) with lithium tert-butoxide at +20°C after a long time. The degree of branching of poly(methyl methacrylates) obtained under similar conditions in the presence of tetrahydrofuran reaches higher values than for polymers prepared in toluene. The tacticity of polymers does not affect the experimentally determined γ values.  相似文献   

2.
Synthetic potential of the ligated anionic polymerization (LAP) of acrylic and metacrylic esters initiated with methyl 2-lithioisobutyrate (MIB-Li) in the presence of an excess of alkali metal tert-alkoxides (prevailingly Li tert-butoxide) is presented. tert-Alkoxides form with ester-enolates, like MIB-Li, cross-aggregates of various composition, which tailor the environment of growing chain-ends, lower their nucleophilicity and restrict in this way the extent of side reactions, in particular self-termination of growing macroanions by back-biting reaction. Thus, stability of polymethacrylate living chains is sufficiently high for methacrylate and acrylate block copolymers to be synthesized. In the case of acrylate polymerization, reaction conditions must be optimized due to their high tendency to self-termination.  相似文献   

3.
The rate of homopolymerization of maleimide has been measured in dimethylformamide solution at 60°C. in the presence of azobisisobutyronitrile; it has been compared to that of N-n-butylmaleimide. The overall rates of polymerization are equal to Rp = k[M]1.1–1.2 [In]0.8 for maleimide, and Rp = k'[M] [In]0.5 for the N-substituted imide. The difference of behavior has been interpreted on the basis of an intramolecular tautomery of the terminal group of the maleimide growing chain and the formation of a resonance-stabilized succinimidyl radical. The relative ease of polymerization of these monomers and of maleic anhydride has been discussed. In the presence of sodium tert-butoxide at 20°C. in dimethylformamide solutions, maleimide polymerizes with hydrogen isomerization. The percentage of N-substituted isomerized units was evaluated at 70–75% by measurement of the rate of hydrolysis in 0.005N sodium hydroxide and comparison with succinimide and N-butylsuccinimide. N-n-butylmaleimide undergoes ring opening together with anionic polymerization in the presence of sodium tert-butoxide at 20°C. and butyllithium at -40°C. Unlike the radical-initiated polymerization, it was impossible to obtain anionic copolymers of maleimide and N-butylmaleimide with acrylonitrile and methyl methacrylate.  相似文献   

4.
The anionic polymerization of methyl methacrylate was carried out in the presence of potassium tert-butoxide (t-BuOK)/quaternary ammonium salts (QAS) in toluene and tetrahydrofuran at −60°C. It was found that in toluene some QAS additives substantially increase the syndiotacticity of poly(methyl methacrylate). Two types of QAS were distinguished, quite different in their action. The addition of QAS with one or two longchain alkyl groups (>C12), does not change significantly the mode of the monomer addition, whereas the polymerization in the presence of tetraalkylammonium salts with four equal substituents and dimethyldidodecylammonium bromide yields predominantly a syndiotactic polymer with high conversion and comparatively low polydispersity (M̄w/M̄w = 1.3−1.5). In some cases QAS additives are more effective modifiers than cryptand [2.2.2].  相似文献   

5.
Synthesis and anionic polymerization of the isocyanate of L-leucine methyl ester (LeuMI) were carried out. LeuMI was prepared by the reaction of L-leucine methyl ester hydrochloride with phosgene. Anionic polymerization of LeuMI was carried out at –50°C in dimethyl-formamide (DMF) using sodium methoxide, potassium tert-butoxide, methyllithium, or sodium cyanide under a nitrogen atmosphere. The obtained polymers were insoluble in common organic solvents such as DMF, tetrahydrofuran, chloroform, and dimethyl sulfoxide, but were soluble in trifluoroacetic acid. Further, anionic copolymerization of LeuMI with n-butyl isocyanate (BI) was also carried out to observe that the smaller the content of LeuMI unit in the copolymer was, the larger the specific rotation of the polymer. From the circular dichroic spectral analyses of the polymers it was confirmed that the capability of helix formation of poly (LeuMI) was smaller than poly(BI). The relaxation of the helical structure of the polymer in trifluoroacetic acid solution was observed, and the smaller the content of LeuMI unit in the copolymer was, the faster the relaxation of the helical structure. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The polymerization of vinyl monomers with various xanthates (potassium tert-butylxanthate, potassium benzylxanthate, zinc n-butylxanthate, etc.) were carried out at 0°C in dimethylformamide. N-Phenylmaleimide, acrylonitrile, methyl vinyl ketone, and methyl methacrylate were found to undergo polymerization with potassium tert-butylxanthate; however, styrene, methyl acrylate, and acrylamide were not polymerized with this xanthate. In the anionic polymerization of methyl vinyl ketone with potassium tert-butylxanthate, the rate of the polymerization was found to be proportional to the catalyst concentration and to the square of the monomer concentration. The activation energy of methyl vinyl ketone polymerization was 2.9 kcal/mole. In the polymerization, the order of monomer reactivity was as follows: N-phenylmaleimide > methyl vinyl ketone > acrylonitrile > methyl methacrylate. The initiation ability of xanthates increased with increasing basicity of the alkoxide group and with decreasing electronegativity of the metal ion in the series, lithium, sodium, and potassium tert-butylxanthate. The relative effects of the aprotic polar solvents on the reactivity of potassium tert-butylxanthate was also determined as follows: diethylene glycol dimethyl ether > dimethylsulfoxide > hexamethylphosphoramide > dimethylformamide > tetrahydrofuran (for methyl vinyl ketone); dimethyl sulfoxide > hexamethylphosphoramide > dimethylformamide ? diethylene glycol dimethyl ether (for acrylonitrile).  相似文献   

7.
The effect of mercaptides on the butyllithium-initiated polymerization of methyl methacrylate in toluene were investigated. The rates of polymerization were decreased by the addition of mercaptides, possibly owing to the formation of a relatively stabilized complex between the mercaptides and the active center of the polymerizing monomer. The stereoregularity was also affected by the addition of mercaptides. The effects increased in the order of increase in the bulk of the alkyl group of the mercaptides: n-propyl < isopropyl < tert-butyl < phenyl. The effects of mercaptides on the stereoregularity were larger than those of the analogous oxygen compounds. The concentrations of butyllithium and monomer had no effect on the stereoregularity.  相似文献   

8.
Polymerization of methyl methacrylate by cyclic ether hydroperoxide–metal acetylacetonate systems for a number of different metals was carried out to compare with the tert-butyl hydroperoxide–metal acetylacetonate initiating systems. The rate of polymerization of methyl methacrylate with cyclic ether hydroperoxides as initiating systems was much higher than that with tert-butyl hydroperoxide. In cyclic ether hydroperoxide initiating systems, V(III), Co(II,III), Fe(III), Cu(II), and Mn(II) promoted the polymerization rate markedly, and Zn(II), Ni(II), Al(III), and Mg(II) had little or no effect; in the tert-butyl hydroperoxide initiating system only V(III), Co(II), and Mn(II) enhanced polymerization rate, and most of other metals showed little or no effect. Furthermore, noticeable differences in color of solution and appearance during polymerization, and in relation between conversion and the degree of polymerization were observed. The effect of metal acetylacetonates on hydroperoxide initiators in polymerization of methyl methacrylate was also compared with that on the decomposition of hydroperoxides.  相似文献   

9.
The effects of amines on the activity of ruthenium catalysts in the controlled synthesis of poly(methyl methacrylate) are reported at 80°C. The introduction of tert-butylamine or triethylamine into the polymerization system raises the polymerization rate by 1–2 orders of magnitude without reducing the high degree of control over the chain propagation step. The “living” character of methyl methacrylate polymerization in the presence of ruthenacarboranes and amines is proved by the fact that, as the monomer conversion increases, the molecular weight of the resulting polymer increases linearly and the polydispersity index decreases. The polymer can serve as a macroinitiator for postpolymerization and block copolymer synthesis.  相似文献   

10.
《合成通讯》2013,43(16):2499-2506
2,3-Dibromo-2-methyl-N-(1-adamantyl)propanamide (4), a precursor equally suited for the preparation of an α-lactam and a β-lactam, upon treatment with sodium tert-butoxide ether gives no α-lactam (5), but an excellent yield of the isomeric β-lactam, 1-(1-adamantyl)-3-bromo-3-methylazetidinone (6) as the only product. Repeating the experiment using a large excess of sodium tert-butoxide still leads to β-lactam 6 in 76.1% yield, but now accompanied by its dehydrobrominated derivative, β-lactam 7, in 17.4% yield, and no trace of α-lactam 5  相似文献   

11.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

12.
The relative reactivity of acrylic acid is known to be influenced by the polymerization medium. Nonetheless, the more commonly used reactivity ratios do not show this dependence because they were calculated from low-conversion polymerizations. We have studied the copolymerization of acrylic acid and methyl methacrylate in a number of non-hydrogen-bonding and hydrogen-bonding solvents. We found that the acrylic acid fraction in the copolymer was larger when copolymerized in a non-hydrogen-bonding medium and that the methyl methacrylate fraction was larger when copolymerized in a hydrogen-bonding medium. The precise reactivity ratios were reported when toluene, benzene, isopentyl, acetate, ethyl acetate, methyl formate, and tert-butyl alcohol were used as the polymerization medium. The values were obtained by chromatographic analysis of residual monomer, followed by computation based on the nonlinear, least-squares technique of Tidwell and Mortimer.  相似文献   

13.
Samarium poly(oxamide) polyanions, formed quantitatively in situ by the reductive coupling polymerization of aromatic diisocyanates with samarium (II) iodide/hexamethylphosphoramide (HMPA) system, were directly used as the polymeric initiators in the graft polymerization with some electrophilic monomers. The graft polymerization of ϵ-caprolactone (CL) with several polyanions derived from bifunctional isocyanates, including tolylene 2,6-diisocyanate, o-tolidine diisocyanate and diphenylmethane diisocyanate, provided the corresponding graft copolymers in one-pot, indicating that the polyanion could work as a new type of reactive polymer. Several factors such as reaction temperature and time and the amount of HMPA and CL affected the behavior of the present polymerization system, and the graft copolymer was obtained quantitatively under the appropriate conditions. The results of the graft polymerizations of tert-butyl methacrylate and methyl methacrylate with the polyanion were also presented. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1381–1387, 1997  相似文献   

14.
A diblock copolymer, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), was grafted onto the surface of nano-titania (nano-TiO2) successfully via reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of TiO2 nanoparticles was modified initially by attaching dithioester groups to the surface using silane coupling agent 3-(chloropropyl)triethoxy silane and sodium ethyl xanthate. The polymerization of methyl methacrylate and styrene were then initiated and propagated on the TiO2 surface by RAFT polymerization. The resulting composite nanoparticles were characterized by means of XPS, FT-IR, 1H NMR and TGA. The results confirmed the successful grafting of poly(methyl methacrylate) (PMMA) and diblock copolymer chains onto the surface of TiO2. The amount of PMMA grafted onto the TiO2 surface increased with the polymerization time. Moreover, the kinetic studies revealed that the ln([M]0/[M]), where [M]0 is the initial and [M] is the time dependent monomer concentrations, increased linearly with the polymerization time, indicating the living characteristics of the RAFT polymerization.  相似文献   

15.
Starch-g-polyacrylonitrile (starch-g-PAN) copolymers were prepared by ceric ammonium nitrate initiation, and the major portion of the starch in these graft copolymers was then removed by acid hydrolysis to yield PAN with oligosaccharide end groups. Although these PAN-oligosaccharide samples reacted with methyl methacrylate in the presence of ceric ammonium nitrate, the resulting products were largely graft copolymers rather than the expected PAN-poly(methyl methacrylate) (PMMA) block copolymers. The following evidence is presented for a PAN-g-PMMA structure: (i) PAN without oligosaccharide end groups also produced a copolymer with methyl methacrylate under our reaction conditions. (ii) Starch-g-PAN (51 or 37% add-on) was a less reactive substrate toward ceric-initiated polymerization than PAN with oligosaccharide end groups. (iii) Low-add-on (18%) starch-g-PAN reacted with methyl methacrylate to give a final graft copolymer in which a large percentage of PMMA was grafted to the PAN component rather than to starch.  相似文献   

16.
Communication: A diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) with hydroxyl group at one end is prepared by successive charge transfer polymerization (CTP) under UV irradiation at room temperature using ethanolamine and benzophenone as a binary initiation system. The diblock copolymer PMMA‐b‐PVAc could be selectively hydrolyzed to the block copolymer of poly(methyl methacrylate) and poly(vinyl alcohol) (PVA) using sodium ethoxide as the catalyst. Both copolymers, PMMA‐b‐PVAc and PMMA‐b‐PVA, are characterized in detail by means of FTIR and 1H NMR spectroscopy, and GPC. The effect of the solvent on CTP and the kinetics of CTP are discussed.  相似文献   

17.
The stability of the growing polymer chain ends for the nitroxide-mediated photo-living radical polymerization of methyl methacrylate (MMA) was explored through block copolymerization with isopropyl methacrylate ( i PMA). The block copolymerization of i PMA was performed with the PMMA prepolymer prepared by the photopolymerization of MMA using the racemic-(2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)-diphenylsulfonium triflate ( t BuS) as the photo-acid generator. When the polymerization of MMA was carried out for 6.5 h, the resulting block copolymer showed a bimodal GPC due to the deactivation of part of the growing chain ends of the prepolymer. On the other hand, when the MMA polymerization was shortened to 5 h, the unimodal block copolymer was obtained without deactivation of the prepolymer.  相似文献   

18.
The polymerization of methyl methacrylate initiated by dicyclohexyl peroxydicarbonate at 30 °C was studied in the presence of tri-n-butylboron and a series of quinones, namely, p-benzoquinone, chloranil, and 2,5-di-tert-butyl-p-benzoquinone, whose concentration changed from 0.25 to 2.00 mol.%. The initial polymerization rate and molecular weight of poly(methyl methacrylate) depend on the structure and concentration of quinone. The growth radicals react with p-benzoquinone and chloranil predominantly at the C=C bond, while they react at the C=O bond of 2,5-di-tert-butyl-p-benzoquinone. The terminal stable oxygen-centered radicals that formed react with alkylborane, terminating reaction chains and generating alkyl radicals into the bulk. The latter are involved in chain initiation.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2114–2119, October, 2004.  相似文献   

19.
A combination of iridium‐catalyzed C H activation/borylation and atom transfer radical polymerization (ATRP) was used to generate polar graft copolymers of syndiotactic polystyrene (sPS). The borylation at aromatic C H bonds of sPS and subsequent oxidation of boronate ester proceeded without negatively affecting the molecular weight properties and the tacticity of sPS. A macroinitiator suitable for ATRP could be synthesized by the esterification of 2‐bromo‐2‐methylpropionyl bromide and hydroxy‐functionalized sPS. The graft polymerizations of methyl methacrylate and tert‐butyl acrylate from the macroinitiator using ATRP afforded polar block grafted sPS materials, syndiotactic polystyrene‐graft‐poly(methyl methacrylate) (sPS‐g‐PMMA) and syndiotactic polystyrene‐graft‐poly(tert‐butyl acrylate) (sPS‐g‐PtBA). The latter was hydrolyzed to yield an amphiphilic graft copolymer, syndiotactic polystyrene‐graft‐poly(acrylic acid) (sPS‐g‐PAA). The structures of the copolymers were characterized by NMR and FTIR spectroscopies. Size exclusion chromatography and 1H NMR spectroscopy were used to study any changes in the molecular weight properties from the parent polymer. A decrease in the hydrophobicity of the graft copolymers was confirmed by water contact angle measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6655–6667, 2009  相似文献   

20.
The photo-controlled/living radical polymerization of tert-butyl methacrylate was performed using a (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator and a 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) mediator in the presence of a (4-tert-butylphenyl)diphenylsulfonium triflate photo-acid generator. The bulk polymerization was carried out at 25 °C by irradiation with a high-pressure mercury lamp. Whereas the polymerization in the absence of MTEMPO produced a broad molecular weight distribution, the MTEMPO-mediated polymerization provided a polymer with a comparatively narrow molecular weight distribution around 1.4 without elimination of the tert-butyl groups. The living nature of the polymerization was confirmed on the basis of the linear correlations for the first-order time–conversion plots and conversion–molecular weight plots in the range below 50% conversion. The block copolymerization with methyl methacrylate also supported the livingness of the polymerization based on no deactivation of the prepolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号