首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. We study a two-frequency perturbation of Duffing's equation. When the perturbation is small, this system has a normally hyperbolic invariant torus which may be subjected to phase locking. Applying a version of Melnikov's method for multifrequency systems, we detect the occurrence of transverse intersection between the stable and unstable manifolds of the invariant torus. We show that if the invariant torus is not subjected to phase locking, then such a transverse intersection yields chaotic dynamics. When the invariant torus is subjected to phase locking, the situation is different. In this case, there exist two periodic orbits which are created in a saddle-node bifurcation. Using another version of Melnikov's method for slowly varying oscillators, we also give conditions under which the stable and unstable manifolds of the periodic orbits intersect transversely and hence chaotic dynamics may occur. Our results reveal that when the invariant torus is subjected to phase locking, chaotic dynamics resulting from transverse intersection between its stable and unstable manifolds may be interrupted. Received November 18, 1993; final revision received September 9, 1997; accepted October 27,1997  相似文献   

2.
3.
Complex economic dynamics is studied by a forced oscillator model of business cycles. The technique of numerical modeling is applied to characterize the fundamental properties of complex economic systems which exhibit multiscale and multistability behaviors, as well as coexistence of order and chaos. In particular, we focus on the dynamics and structure of unstable periodic orbits and chaotic saddles within a periodic window of the bifurcation diagram, at the onset of a saddle-node bifurcation and of an attractor merging crisis, and in the chaotic regions associated with type-I intermittency and crisis-induced intermittency, in non-linear economic cycles. Inside a periodic window, chaotic saddles are responsible for the transient motion preceding convergence to a periodic or a chaotic attractor. The links between chaotic saddles, crisis and intermittency in complex economic dynamics are discussed. We show that a chaotic attractor is composed of chaotic saddles and unstable periodic orbits located in the gap regions of chaotic saddles. Non-linear modeling of economic chaotic saddle, crisis and intermittency can improve our understanding of the dynamics of financial intermittency observed in stock market and foreign exchange market. Characterization of the complex dynamics of economic systems is a powerful tool for pattern recognition and forecasting of business and financial cycles, as well as for optimization of management strategy and decision technology.  相似文献   

4.
We examine the strange chaotic attractor and its unstable periodic orbits for a one degree of freedom nonlinear oscillator with a non-symmetric potential that models a quarter car forced by the road profile. We propose an efficient method of chaos control that stabilizes these orbits using a pulsive feedback technique. A discrete set of pulses is able to transfer the system from one periodic state to another.  相似文献   

5.
We stabilize desired unstable periodic orbits, embedded in the chaotic invariant sets of mechanical systems with impacts, by applying a small and precise perturbation on an available control parameter. To obtain such perturbation numerically, we introduce a transcendental map (impact map) for the dynamical variables computed just after the impacts. To show how to implement the method, we apply it to an impact oscillator and to an impact-pair system.  相似文献   

6.
This paper reports a new four-dimensional energy resources chaotic system. The system is obtained by adding a new variable to a three-dimensional energy resource demand–supply system established for two regions of China. The dynamics behavior of the system will be analyzed by means of Lyapunov exponents and bifurcation diagrams. Linear feedback control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. Numerical simulations are presented to show these results.  相似文献   

7.
Tama?evi?ius et al. proposed a simple 3D chaotic oscillator for educational purpose. In fact the oscillator can be implemented very easily and it shows typical bifurcation scenario so that it is a suitable training object for introductory education for students. However, as far as we know, no concrete studies on bifurcations or applications on this oscillator have been investigated. In this paper, we make a thorough investigation on local bifurcations of periodic solutions in this oscillator by using a shooting method. Based on results of the analysis, we study chaos synchronization phenomena in diffusively coupled oscillators. Both bifurcation sets of periodic solutions and parameter regions of in-phase synchronized solutions are revealed. An experimental laboratory of chaos synchronization is also demonstrated.  相似文献   

8.
We consider the dynamics of a harmonically forced oscillator with an asymmetric elastic–perfectly plastic stiffness function. The computed bifurcation diagrams for the oscillator show regions of periodic motion, hysteresis and large regions of chaotic motion. These different regions of dynamical behaviour are plotted in a two-dimensional parameter space consisting of forcing amplitude and forcing frequency. Examples of the chaotic motion encountered are shown using a discontinuity crossing map. Comparisons are made with the symmetric oscillator by computing a typical bifurcation diagram and considering previously published results for the symmetric system. From this we conclude that the asymmetric system is dominated by a large region of chaotic motion whereas in the symmetric oscillator period one motion and coexisting period three motion predominates.  相似文献   

9.
多频激励软弹簧型Duffing系统中的混沌   总被引:8,自引:0,他引:8  
研究了多频激励下的软弹簧型Duffing系统的混沌动力学,发现混沌产生的根本原因是系统相空间中横截异宿环面的存在.建立了双频激励情况下二维环面上的Poincaré映射、稳定流形和不稳定流形,应用Melnikov方法给出了稳定流形和不稳定流形横截相交的条件,并将此方法推广到激励包含有限多个频率的情形.推广了Melnikov方法在高维系统中的应用,给出了Smale马蹄意义下混沌存在的判据.同时证明,激励频率数目的增加扩大了参数空间上的混沌区域.  相似文献   

10.
王震  惠小健  孙卫  李永新 《数学杂志》2015,35(3):672-682
本文研究了一类周期参数扰动的T混沌系统的周期轨道问题.利用次谐波Melnikov方法,获得了具有广义Hamilton结构的周期参数扰动的慢变系统的振荡周期轨道和旋转周期轨道.  相似文献   

11.
12.
This paper analyses the dynamic behavior of an energy resources system with parametric perturbations. By adding the small sinusoidal perturbations to the three-dimensional energy resource system established for two regions of China, the autonomous system becomes the non-autonomous system which has richer dynamical behaviors. Periodic, chaotic and hyperchaos behaviors are discovered in the system by means of Lyapunov exponents and bifurcation diagrams. A new energy resources hyperchaos attractor is obtained, which has not yet been reported in present literature. Furthermore, effective non-autonomous feedback controllers are designed for stabilizing hyperchaos to unstable periodic orbits and quasi-periodic orbits. Numerical simulations are presented to show these results. This study will be instructive for the energy resource demand-supply in some regions of China.  相似文献   

13.
Crisis transitions in excitable cell models   总被引:1,自引:0,他引:1  
It is believed that sudden changes both in the size of chaotic attractor and in the number of unstable periodic orbits on chaotic attractor are sufficient for interior crisis. In this paper, some interior crisis phenomena were discovered in a class of physically realizable dissipative dynamical systems. These systems represent the oscillatory activity of membrane potentials observed in excitable cells such as neuronal cells, pancreatic β-cells, and cardiac cells. We examined the occurrence of interior crises in these systems by two means: (i) constructing bifurcation diagrams and (ii) calculating the number of unstable periodic orbits on chaotic attractor. Bifurcation diagrams were obtained by numerically integrating the simultaneous differential equations which simulate the activity of excitable membranes. These bifurcation diagrams have shown an apparent crisis activity. We also demonstrate in terms of the associated Poincaré maps that the number of unstable periodic orbits embedded in a chaotic attractor suddenly increases or decreases at the crisis.  相似文献   

14.
15.
In a 2D parameter space, by using nine experimental time series of a Chua’s circuit, we characterized three codimension-1 chaotic fibers parallel to a period-3 window. To show the local preservation of the properties of the chaotic attractors in each fiber, we applied the closed return technique and two distinct topological methods. With the first topological method we calculated the linking numbers in the sets of unstable periodic orbits, and with the second one we obtained the symbolic planes and the topological entropies by applying symbolic dynamic analysis.  相似文献   

16.
Bifurcations and Chaos in Duffing Equation   总被引:2,自引:0,他引:2  
The Duffing equation with even-odd asymmetrical nonlinear-restoring force and one external forcingis investigated.The conditions of existence of primary resonance,second-order,third-order subharmonics,m-order subharmonics and chaos are given by using the second-averaging method,the Melnikov method andbifurcation theory.Numerical simulations including bifurcation diagram,bifurcation surfaces and phase portraitsshow the consistence with the theoretical analysis.The numerical results also exhibit new dynamical behaviorsincluding onset of chaos,chaos suddenly disappearing to periodic orbit,cascades of inverse period-doublingbifurcations,period-doubling bifurcation,symmetry period-doubling bifurcations of period-3 orbit,symmetry-breaking of periodic orbits,interleaving occurrence of chaotic behaviors and period-one orbit,a great abundanceof periodic windows in transient chaotic regions with interior crises and boundary crisis and varied chaoticattractors.Our results show that many dynamical behaviors are strictly departure from the behaviors of theDuffing equation with odd-nonlinear restoring force.  相似文献   

17.
In this paper stabilizing unstable periodic orbits (UPO) in a chaotic fractional order system is studied. Firstly, a technique for finding unstable periodic orbits in chaotic fractional order systems is stated. Then by applying this technique to the fractional van der Pol and fractional Duffing systems as two demonstrative examples, their unstable periodic orbits are found. After that, a method is presented for stabilization of the discovered UPOs based on the theories of stability of linear integer order and fractional order systems. Finally, based on the proposed idea a linear feedback controller is applied to the systems and simulations are done for demonstration of controller performance.  相似文献   

18.
We show that the chaotic dynamics of the conservative Duffing-Holmes oscillator obeys the universal Feigenbaum-Sharkovskii-Magnitskii theory of passage to chaos in dynamical systems of ordinary differential equations. Moreover, the cascades of bifurcations of the conservative and dissipative oscillators are continuously related to each other. Our study uses the stable control method, which permits rapidly stabilizing nearly any periodic solution and dynamically changing system parameters without moving far away from that periodic solution.  相似文献   

19.
The possibility of constructing chaotic and complex periodic orbits of desired configurations is demonstrated on one-dimensional discontinuous maps. With appropriately located discontinuity, these maps can generate a rich selection of specific orbits with long laminar segments. A simple method is proposed to determine the features of the orbit obtained. This technique, applied to special maps with a horizontal linear branch, allows us to generate a great variety of stable periodic orbits with a specified future by only small variations of the map control parameter.  相似文献   

20.
A saddle-node bifurcation with the coalescence of a stable periodic orbit and an unstable periodic orbit is a common phenomenon in nonlinear systems. This study investigates the mechanism of producing another saddle-node bifurcation with the coalescence of two unstable periodic orbits. The saddle-node bifurcation results from a codimension-two bifurcation that a period doubling bifurcation line tangentially intersects a saddle-node bifurcation line in a parameter plane. Based on the bifurcation theory, the saddle-node bifurcation with the coalescence of two unstable periodic orbits is studied using the codimension-two bifurcation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号