首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of cis-[Pt(dmso)2Cl2] with 2 mol of KBr or KI leads to the formation of the analogous dibromide or diiodide complexes. Treatment of [M(dmso)2Cl2] [M = Pt (cis-) or Pd (trans-)] with AgNO3 (2 mol) in H2O followed by 1mol of potassium oxalate, maleate, cyclobutane dicarboxylate (CBDC), malonate or 2mol of potassium cyclohexane carboxylate or pivalate leads to the formation of the corresponding PtII and PdII carboxylate complexes. The single crystal X-ray structure determination of [Pt(dmso)2(CBDC)] has been discussed and compared with data on other related complexes. The in vitro cytotoxic activity of some of these complexes against eight tumour cell lines has been examined using the MTT-colorimetric assay.  相似文献   

2.
Condensation of 2,6-diacetylpyridine (dap) with S-methyldithiocarbazate (smdtc) in a 1:2 molar ratio yields a bicondensed pentadentate Schiff base (H2dapsme) which reacts with K2MCl4 (M = PdII, PtII) giving stable complexes of empirical formula, [M(dapsme)] · 0.5Me2CO. These complexes have been characterized by a variety of physico-chemical techniques. Condensation of dap with smdtc in a 1:1 molar ratio also yields the bicondensed Schiff base (H2dapsme) as the major product, but a mono-condensed one-armed Schiff base (Hmdapsme) is also obtained as a minor product. The latter reacts with K2PdCl4 in an EtOH–H2O mixture yielding a crystalline complex of empirical formula, [Pd(mdapsme)Cl], the crystal structure of which has been determined by X-ray diffraction. The complex has a distorted square-planar structure in which the ligand is coordinated to the palladium(II) ion as a uninegatively charged tridentate chelating agent via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom; the oxygen atom of the acetyl group does not participate in coordination.  相似文献   

3.
Summary The reactions of K2[MX4] (M = PdII or PtII and X = Cl or Br) witho-aminobenzylamine (o-aba) have been studied in neutral aqueous solutions. Two types of complexes were isolated from these studies: [MLX2] and [ML2]X2. Elemental analyses, conductivity measurements, i.r. and visible spectra suggest polymeric structures for [MLX2] with the ligand,o-aba = L, acting as a bridge, and/or mononuclear structures for [ML2]X2.  相似文献   

4.
Several new PtII and PdII complexes bearing the enantiomerically pure (1R,2R)-(–)-l,2-cyclohexanediamine (dach) ligand, of general formula [MX2{(1R,2R)-dach}], where M = Pt or Pd, X2 = cis- or trans- or (1R,2R)-1,2-cyclohexyldicarboxylate anions, have been synthesized and characterized physicochemically and spectroscopically. These complexes have been screened in vitro against the three tumour cell lines K562, HeLa and L929, and the results obtained were compared with those of the reference standards, cisplatin, carboplatin and oxaliplatin; the known antitumour drugs. The single crystal X-ray structure determination of the [Pt(C2O4)(cis-dach)] complex has been discussed and compared with that of oxaliplatin, [Pt(C2O4){(1R,2R)-dach}].  相似文献   

5.
Summary 2,6-Dimethyl-4H-pyran-4-thione (DMTP) acts as a sulphur donor towards PtII and PdII halides yielding adducts of general formula [M(DMTP)2X2] (M=Pd or Pt; X=Cl, Br or I). When complex syntheses are performed in benzene, the solvated species [M(DMTP)2X2]·C6H6 (M=Pd or Pt; X=Cl or Br) are obtained. The compounds have been characterized by i.r. and n.m.r. (1H and13C) spectroscopy and by thermogravimetric data. The adduct geometry and the influence of benzene are discussed.  相似文献   

6.
The reactions of AuIII, PtII and PdII complexes with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic (H2O, MeOH, EtOH) and aprotic (DMF, CH2Cl2) solvents. Compounds in which the pyridine ligand is N-coordinated, either in the original aldehydic form or in a new form derived from addition of one or two protic molecules, have been isolated, namely: [Au(2CHO-py · H2O)Cl3], [Au(2CHO-py · MeOH)Cl3], [Au(2CHO-py · 2EtOH)Cl3], cis-[Pt(2CHO-py)2Cl2], trans-[Pd(2CHO-py)2Cl2], trans-[Pt(dmso)(2CHO-py)Cl2], [Pt{C5H4N-(CH2SMe)}Cl(2CHO-py)](ClO4), [Pt(terpy)(2CHOpy)](ClO4)2, [Pt(terpy)(2CHO-py · H2O)](ClO4)2 (terpy = 2,2′:6′,2′′-terpyridine). 1H-n.m.r. experiments show that the addition of the protic molecule(s) to the PtII and PdII complexes is reversible. The effects of the nature of the metal ion and the ancillary ligands as well as of the total charge of the complexes on the relative stability of the addition products are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

8.
The reactions of 4N‐ethyl‐2‐[1‐(pyrrol‐2‐yl)methylidene(hydrazine carbothioamide ( 4 EL1 ) and 4N‐ethyl‐2[1‐(pyrrol‐2‐yl)ethylidene(hydrazine carbothioamide ( 4 EL2 ) with Group 12 metal halides afforded complexes of types [M(L)2X2] (M = Zn, Cd; L = 4 EL1, 4 EL2; X = Cl, Br, I; 1 – 6 , 14 – 19 ) and [M(L)X2] (M = Hg; L = 4 EL1, 4 EL2; X = Cl, Br, I; 7 – 9 , 20 – 22 ). In addition, reaction of 4 EL1 with salts of CuII, NiII, PdII and PtII afforded compounds of type [M(4 EL1–H)2] ( 10 – 13 ). The new compounds were characterized by elemental analysis, FAB mass spectrometry, IR and electronic spectroscopy and, for sufficiently soluble compounds, 1H, 13C and, when appropriate, 113Cd or 199Hg NMR spectrometry. The spectral data suggest that in their complexes with Group 12 metal cations, both thiosemicarbazones are neutral and S‐monodentate; and for [Zn(4 EL1)2I2] ( 3 ), [Cd(4 EL1)2Br2] ( 5 ) and [Hg(4 EL1)Cl2]2 ( 7 ) this was confirmed by X‐ray diffractometry. By contrast, in its complexes with CuII and Group 10 metal cations, 4 EL1 is monodeprotonated and S,N‐bidentate, as was confirmed by X‐ray diffractometry for [Ni(4 EL1–H)2] ( 11 ) and [Pd(4 EL1–H)2] ( 12 ).  相似文献   

9.
Summary A novel series of formazan complexes of general formula FoML [H2Fo = 1-(2-hydroxyphenyl)-3,5-diphenylformazan; M = NiII, PdII or PtII; L = NH3, py and Ph3P] are described. The formazan nickel(II) system shows linkage isomerism; one isomer, A, contains an unusual five-membered formazan chelate ring, whereas the other, isomer B, has the usual six-membered ring.13C n.m.r., u.v. and i.r. spectra are presented and interpreted. From these the palladium and platinum complexes appear to contain the six-membered ring of the B type isomer.  相似文献   

10.
Abstract

The substitution behavior of the [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex in water with several bio-relevant ligands such as chloride, thiourea and N,N′-dimethylthiourea, was investigated and compared with the reactivity of the [RuII(terpy)(bipy)Cl]Cl and [RuII(terpy)(en)Cl]Cl (bipy =2,2′-bipyridine and en?=?ethylenediamine) complexes. Earlier results have shown that the reactivity and pKa values of Ru(II) complexes can be tuned by a systematic variation of electronic effects provided by bidentate spectator chelates. The reactivity of both the chlorido and aqua derivatives of the studied Ru(II) complexes increases in the order [RuII(terpy)(bipy)X]+/2+?<?[RuII(terpy)(ampy)X]+/2+?<?[RuII(terpy)(en)X]+/2+. This finding can be accounted for in terms of π back-bonding effects provided by the pyridine ligands. The activation parameters for all the studied reactions support an associative interchange substitution mechanism.  相似文献   

11.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

12.
The stereodynamics of ferrocenylsulphide-palladium(II) and -platinum(II) complexes, Fe(C5H4SR)2MX2, (M = PdII, PtII; X = Cl, Br; R = Ph, i-Pr and i-Bu), have been examined by variable temperature NMR. At temperatures down to ca. ?100° C, the pyramidal inversion of the S atoms could be slowed down sufficiently to yield accurate energy data, while the reversal of the ferrocenophane ring remained fast on the NMR time scale. ΔG data for the S inversion process were in the range 47 to 65 kJ mol?1 and were influenced to varying extents by the nature of the transition metal, the halogen, and the R substituent on the sulphur.  相似文献   

13.
Summary Vanillin thiosemicarbazone (VTSC) has been used to isolate the complexes of the types [M(VTSC)2(H2O)2]X2 (M=MnII, FeII, CoII, or NiII and X=Cl) and [M(VTSC)X2]H2O (M=CuII, ZnII, CdII or HgII and X=Cl). Probable structures of these complexes are suggested on the basis of elemental analysis, molar conductance, magnetic moment and electronic and i.r. spectral data. The fungicidal activity of VTSC and the isolated complexes has been evaluated on pathogenic fungi,Alternaria (Sp.),Paecilomyces (Sp.) andPestalotia (Sp.).On leave from the University of Myosore.  相似文献   

14.
Summary Binuclear PdII and PtII complexes of the type [M2Cl2(-Opy)2(PR3)2] [M = Pd or Pt; Opy = 2-OC5H4N (2-hydroxypyridinate ion); PR3 = PEt3, Pn-Bu3, PMe2Ph or PMePh2] were synthesized and characterized by elemental analysis, 1H- and 31P-n.m.r. spectroscopies. The Pd complexes exist in the sym trans form, whereas the corresponding Pt complexes were generated as different isomers.  相似文献   

15.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

16.
Summary Platinum(II) and palladium(II) chloride complexes with purine, pyrimidine (pyrimid),N-ethylimidazole(N-EtIm) andN-propylimidazole(N-PropIm) ligands have been prepared and characterized by analysis and spectroscopic methods. The compounds have general formula M(L1)(L2)Cl2 where M=PtII, PdII; L1=purine or pyrimid, L2=N-EtIm orN-PropIm, except the complexes Pt(purine)(pyrimid)Cl2 and [Pd(purine)(pyrimid)2Cl]Cl and [Pt(purine)2 (N-propIm)Cl]Cl·2H2O.  相似文献   

17.
Summary Reactions of 2-mercapto-3-phenyl-4-quinazolinone (LH) with PdCl2 · 2H2O and PtCl4 · 5H2O lead to the formation of [ML2 complexes (M = PdII or PtII). Reactions of PdCl2 · 2H2O with LH in the presence ofN-heterocyclic bases yield compounds of type [PdLClB], (B = py, 3-pic, (o-phen)1/2, and (bipy)1/2) or Pd(LH)Cl(imz). PtCl4] · 5H2O reacts with LH in the presence of variousN-heterocyclic bases to give [PtL2B] compounds (B = py, 3-pic, (o-phen)1/2 or (pyrm)1/2) and [PtL2BCl] (B = imz or pz). These complexes have been characterised on the basis of analytical, i.r. and electronic spectral and magnetic measurement studies, and tentative structures for them are proposed.  相似文献   

18.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

19.
Complexes of the type [M(tren)(abpt)](NO3)2(H2O)n (1–6) [M = MnII, FeII, CoII, CuII, ZnII (n = 2), NiII (n = 2.25), tren = tris(2-aminoethyl)amine, and abpt = 4-amino-3,5-bis(pyridin-2yl)-1,2,4 triazole] have been prepared. The bonding mode and overall geometry of the complexes have been deduced by elemental analyses, molar conductance values, spectral studies (obtained from FT-IR), 1H-n.m.r., electronic spectral analyses and magnetic susceptibility measurements. A detailed molecular structure of complex (4) has been determined by single X-ray crystallography.  相似文献   

20.
Summary Complexes of 2-mercapto-1-methylimidazole (TMZ) with PtII, PdII, RhIII and RuIII of the general formulae Pt(TMZ)2Cl2, Pd(TMZ)4Cl2. Rh(TMZ)Cl3 and Ru(TMZ)Cl3 have been obtained. The thermal stabilities of the compounds were estimated by derivatographic measurements and the electron-donating atom of the measurements and the electron-donating atom of the ligand was identified from the i.r. absorbtion spectra. Lattice constants for the PtII and PdII complexes were estimated from their x-ray powder diffraction patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号