首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Kuhn  R. Müller 《PAMM》2008,8(1):10223-10224
The variational formulation of brittle fracture as formulated for example by Francfort and Marigo in [1], where the total energy is minimized with respect to any admissible crack set and displacement field, allows the identification of crack paths, branching of preexisting cracks and even crack initiation without additional criteria. For its numerical treatment a continuous approximation of the model in the sense of Γ-convergence has been presented by Bourdin in [2]. In the regularized Francfort–Marigo model cracks are represented by an additional field variable (secondary variable) s∈[0,1] which is 0 if the material is cracked and 1 if it is undamaged. In this work, we reinterpret the crack variable as a phase field order parameter and address cracking as a phase transition problem. The crack growth is governed by the evolution equation of the order parameter which resembles the Ginzburg–Landau equation. The numerical treatment is done by finite elements combined with an implicit Euler scheme for the time integration. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
The stress-strain relation for an aging material is obtained from an analysis of a four-element model of a viscoelastic body with variable coefficients. In this formulation the problem of calculating the rupture life is divided into four steps: a) solution of the boundary-value problem of the theory of elasticity of an incompressible material; b) calculation of the stationary thermal field; c) solution of the rheological equation at the danger point; d) solution of the criterial equation for the local fracture time. An example of the calculation of the high-temperature rupture life of a rubber cord under constant load is given. The agreement with experiment is satisfactory.Riga Polytechnic Institute. Translated from Mekhanika Polimerov, No. 1, pp. 91–95, January–February, 1976.  相似文献   

5.
Charlotte Kuhn  Ralf Müller 《PAMM》2011,11(1):159-160
In the pioneering work by Griffith, it is assumed that a crack propagates, if this is energetically favorable. However, this original formulation requires a pre-existing initial crack. In order to bypass this deficiency of classical Griffith theory, Francfort and Marigo advocate a global variational criterion, where the total energy is minimized with respect to any admissible displacement field and crack set. Bourdin's regularized approximation of this variational formulation makes use of a continuous scalar field to indicate cracks. Based on this regularization a phase field fracture model is formulated. The crack field is assumed to follow a Ginzburg-Landau type evolution equation, and cracking is addressed as a phase transition problem. The coupled problem of mechanical balance equations and the evolution equation is solved using the finite element method combined with an implicit time integration scheme. The numerical solution naturally yields the crack evolution including crack propagation, kinking, branching and initiation without any additional criteria. In this work we study the driving mechanisms behind the crack evolution in the phase field fracture model and compare to the purely energetic considerations of the underlying variational formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The numerical modeling of dynamic failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies and demands the formulation of additional branching criteria. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. We focus on the extension of a recently developed phase field model for fracture from the quasi-static setting towards the dynamic setting. It is obtained by taking into account inertial terms and associated dynamic integrators. The introduction of a history field, containing a maximum fracture-driving energy, provides a very transparent representation of the balance equation that governs the diffusive crack topology. In particular, it allows for the construction of an extremely robust operator split technique. In a subsequent step, the proposed model is extended to three dimensional problems. The dynamic treatment opens the door to the analysis of complex fracture phenomena like multiple crack branching and crack arrest. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In phase field fracture models cracks are indicated by the value of a scalar field variable which interpolates smoothly between broken and undamaged material. The evolution equation for this crack field is coupled to the mechanical field equations in order to model the mutual interaction between the crack evolution and mechanical quantities. In finite element simulations of crack growth at comparatively slow loading velocities, a quasi-static phase field model yields reasonable results. However, the simulation of fast loading or the nucleation of new cracks challenges the limits of such a formulation. Here, the quasi-static phase field model predicts brutal crack extension with an artificially high crack speed. In this work, we analyze to which extend a dynamic formulation of the mechanical part of the phase field model can overcome this paradox created by the quasi-static formulation. In finite element simulations, the impact of the dynamic effects is studied, and differences between the crack propagation behavior of the quasi-static model and the dynamic formulation are highlighted. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Charlotte Kuhn  Ralf Müller 《PAMM》2010,10(1):121-122
Sharp interface material models can be related to phase field models by introducing an order parameter, whose value is assigned to the different phases of a material. The elastic material law is coupled to the evolution equation of the order parameter and cracking is addressed as a phase transition problem instead of a moving boundary value problem. A regularization parameter ϵ controls the width of the diffuse cracks represented by the order parameter and the underlying sharp interface model can be recovered from the phase field model by the limit ϵ → 0. However, in numerical simulations using standard finite elements with linear shape functions, the minimum value of ϵ is restricted by the grid size and therefore the discretization of the crack field requires extensive mesh refinement for small values of ϵ. In this work, we construct special 2d shape functions which take into account the exponential character of the crack field and its dependence on the parameter ϵ. Especially in simulations with small values of ϵ and a rather coarse mesh, the elements with exponential shape functions perform significantly better than standard linear elements. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
Charlotte Kuhn  Ralf Müller 《PAMM》2009,9(1):191-192
In Francfort and Marigo's variational free-discontinuity formulation of brittle fracture [1] cracking is regarded as an energy minimization process, where the total energy is minimized with respect to any admissible crack set and displacement field. No additional criterion is needed to determine crack paths, branching of cracks and crack initiations. However, a direct discretization of the model is faced with significant technical problems, as it involves minimizations in a set of possibly discontinuous functions. A regularized version of the model has been introduced by Bourdin [2] and based on this, we use the concept of a continuum phase field model to simulate cracking processes. Cracks are indicated by the order parameter of the phase field model and cracking can be regarded as a phase transition problem. Additionally, introducing the heat equation into the model, it is capable to also take account of crack propagation due to thermal stresses. In the numerical implementation, crack parameter as well as temperature are treated as additional degrees of freedom and the coupled field equations are solved using the finite element method together with an implicit time integration scheme. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The Vlasov–Fokker–Planck equation is a model for a collisional, electrostatic plasma. The approximation of this equation in one spatial dimension is studied. The equation under consideration is linear in that the electric field is given as a known function that is not internally consistent with the phase space distribution function. The approximation method applied is the deterministic particle method described in Wollman and Ozizmir [Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in one dimension, J. Comput. Phys. 202 (2005) 602–644]. For the present linear problem an analysis of the stability and convergence of the numerical method is carried out. In addition, computations are done that verify the convergence of the numerical solution. It is also shown that the long term asymptotics of the computed solution is in agreement with the steady state solution derived in Bouchut and Dolbeault [On long time asymptotics of the Vlasov–Fokker–Planck equation and of the Vlasov–Poisson–Fokker–Planck system with coulombic and Newtonian potentials, Differential Integral Equations 8(3) (1995) 487–514].  相似文献   

12.
The objective of topology optimization is to find a mechanical structure with maximum stiffness and minimal amount of used material for given boundary conditions [2]. There are different approaches. Either the structure mass is held constant and the structure stiffness is increased or the amount of used material is constantly reduced while specific conditions are fulfilled. In contrast, we focus on the growth of a optimal structure from a void model space and solve this problem by introducing a variational problem considering the spatial distribution of structure mass (or density field) as variable [3]. By minimizing the Gibbs free energy according to Hamilton's principle in dynamics for dissipative processes, we are able to find an evolution equation for the internal variable describing the density field. Hence, our approach belongs to the growth strategies used for topology optimization. We introduce a Lagrange multiplier to control the total mass within the model space [1]. Thus, the numerical solution can be provided in a single finite element environment as known from material modeling. A regularization with a discontinuous Galerkin approach for the density field enables us to suppress the well-known checkerboarding phenomena while evaluating the evolution equation within each finite element separately [4]. Therefore, the density field is no additional field unknown but a Gauß-point quantity and the calculation effort is strongly reduced. Finally, we present solutions of optimized structures for different boundary problems. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
This paper presents a numerical solution to the equations describing Darcian flow in a variably saturated porous medium—a classical Richards’ equation model Richards (1931) [1] and an extension of it that approximates the flow in media with preferential paths—a dual porosity model Gerke and van Genuchten (1993) [8]. A numerical solver to this problem, the DRUtES computer program, was developed and released during our investigation. A new technique which maintains an adaptive time step, defined here as the Retention Curve Zone Approach, was constructed and tested. The aim was to limit the error of a linear approximation to the time derivative part. Finally, parameter identification was performed in order to compare the behavior of the dual porosity model with data obtained from a non-homogenized fracture and matrix flow simulation experiment.  相似文献   

14.
A combined continuum phase field model for martensitic transformations and damage is introduced. The present approach considers the eigenstrain within the martensitic phase which leads in the surrounding material to both tensile and compressive stresses. The damage model needs to account for an appropriate differentiation thereof, since compressive stresses should not promote fracture. Interactions between micro crack propagation and the formation of the martensitic phases are studied in two dimensions. In agreement with experimental observations, martensite forms at the crack tip and influences the crack formation. For the numerical implementation finite elements are used while for the transient terms an implicit time integration scheme is employed. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The macroscopic mechanical behavior of multi-phasic materials depends on the formation and evolution of their microstructure by means of phase transformation. In case of martensitic transformations, the resulting phase boundaries are sharp interfaces. We carry out a geometrically motivated discussion of the regularization of such sharp interfaces by use of an order parameter/phase-field and exploit the results for a regularized sharp interface model for two-phase elastic materials with evolving phase boundaries. To account for the dissipative effects during phase transition, we model the material as a generalized standard medium with energy storage and a dissipation function that determines the evolution of the regularized interface. Making use of the level-set equation, we are thereby able to directly translate prescribed sharp interface kinetic relations to the constitutive model in the regularized setting. We develop a suitable incremental variational three-field framework for the dissipative phase transformation problem. Finally, the modeling capability and the associated numerical solution techniques are demonstrated by means of a representative numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The numerical modeling of failure mechanisms due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by recently developed diffusive crack modeling concepts, which are based on the introduction of a crack phase field. Such an approach is conceptually in line with gradient-extended continuum damage models which include internal length scales. In this paper, we extend our recently outlined mechanical framework [1–3] towards the phase field modeling of fracture in the coupled problem of fluid transport in deforming porous media. Here, extremely complex crack patterns may occur due to drying or hydraulic induced fracture, the so called fracking. We develop new variational potentials for Biot-type fluid transport in porous media at finite deformations coupled with phase field fracture. It is shown, that this complex coupled multi-field problem is related to an intrinsic mixed variational principle for the evolution problem. This principle determines the rates of deformation, fracture phase field and fluid content along with the fluid potential. We develop a robust computational implementation of the coupled problem based on the potentials mentioned above and demonstrate its performance by the numerical simulation of complex fracture patterns. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Recently developed continuum phase field models for brittle fracture show excellent modeling capability in situations with complex crack topologies including branching in the small and large strain applications. This work presents a generalization towards fully coupled multi-physics problems at large strains. A modular concept is outlined for the linking of the diffusive crack modeling with complex multi field material response, where the focus is put on the model problem of finite thermo-elasticity. This concerns a generalization of crack driving forces from the energetic definitions towards stress-based criteria, the constitutive modeling of degradation of non-mechanical fluxes on generated crack faces. Particular assumptions are made on the generation of convective heat exchanges approximating surface load integrals of the sharp crack approach by distinct volume integrals. The coupling effect is also shown in generation of cracks due to thermally induced stress states. We finally demonstrate the performance of the phase field formulation of fracture at large strains by means of representative numerical examples. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
J. Mosler  L. Stanković 《PAMM》2005,5(1):347-348
In this paper, a geometrically nonlinear finite element approximation for highly localized deformation in structures undergoing material failure in the form of strain softening, is developed. The basis for its numerical implementation in this class of problems is defined through the elaboration of Strong Discontinuity Approach-fundamentals. Proposed numerical model uses an Enhanced Assumed Strain Concept for the additive decomposition of the displacement gradient into a conforming and an enhanced part. The discontinuous component of the displacement field which is associated with the failure in the modeled structure is isolated in the enhanced part of the deformation gradient. In contrast to previous works, this part of the deformation mapping is condensed out at the material level, without the application of static condensation technique. The resulting set of constitutive equations is formally identical to that of standard plasticity and therefore, can be solved using the return-mapping algorithm. No assumptions regarding the interface law connecting the displacement discontinuity with the conjugate traction vector are made. As a result, the proposed numerical solution can be applied to a broad range of different mechanical problems including mode-I fracture in brittle materials or the analysis of shear bands. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
本文主要研究相场模拟中的Allen-Cahn模型,考虑一维Allen-Cahn方程紧差分方法的数值逼近.建立具有O(∫τ2+h4)精度的全离散紧差分格式,证明在合理的步长比和时间步长的约束下,其数值解满足离散最大化原则,在此基础上,研究了全离散格式的能量稳定性.最后给出数值算例.  相似文献   

20.
In the present work, a model of nonlinear deformation of stochastic composites under microdamaging is developed for the case of a composite with orthotropic inclusions, when microdefects are accumulated in the matrix. The composite is treated as an isotropic matrix strengthened by triaxial arbitrarily oriented ellipsoidal inclusions with orthotropic symmetry of the elastic properties. It is assumed that the process of loading leads to accumulation of damage in the matrix. Fractured microvolumes are modeled by a system of randomly distributed quasispherical pores. The porosity balance equation and relations for determining the effective elastic modules in the case of orthotropic components are taken as basic relations. The fracture criterion is specified as the limiting value of the intensity of average shear stresses acting in the intact part of the material. On the basis of the analytic and numerical approach, we propose an algorithm for the determination of nonlinear deformation properties of the investigated material. The nonlinearity of composite deformations is caused by the finiteness of deformations. By using the numerical solution, the nonlinear stress–strain diagrams are predicted and discussed for an orthotropic composite material for various cases of orientation of inclusions in the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号