首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在传统的多曝光图像融合方法中,一旦目标发生移动则会在最终融合图像中出现"鬼影"现象。现有的去"鬼影"算法大部分都继承了参考图像中的大量信息,倘若参考图像中出现曝光不足/曝光过度现象,便会影响到最终的融合结果。基于此,提出了一种基于图像块分解的多曝光图像融合去鬼影算法。首先将参考图像划分为曝光正常及曝光不足/过度两大区域,并有针对性地对这两部分区域进行处理。为了更加精准地检测出鬼影区域,将多曝光图像块分解成信号结构、信号强度和平均强度3个概念相独立的部分,采用图像块结构一致性检测的方式来进行鬼影检测。最后,去除结构不一致的图像块并对这3个部分分开融合,重构所需图像块并将其聚合至最终融合图像。实验结果表明,与现有的去"鬼影"算法相比,所提算法取得了更好的视觉效果,且计算效率得到了较大提升。  相似文献   

2.
针对沙尘图像存在细节模糊、对比度低和颜色偏移等问题,提出了基于多曝光图像融合的沙尘图像增强算法.首先对蓝通道进行补偿,以弥补沙尘图像的蓝光损失;其次对图像的RGB三通道分别进行标准化,以减小通道直方图之间的偏离,从而去除偏色.为了提高图像中不同区域的细节,采用线性参数控制的方法生成多幅曝光图像.通过用对比度、饱和度和良...  相似文献   

3.
针对多曝光的拉普拉斯金字塔融合算法存在部分过曝光以及暗部细节丢失问题,用相位一致性滤波函数替换原算法融合系数中的对比度函数,改进算法在提取边缘时可以忽略光照和对比度变化对图像的影响,使得融合结果更自然,细节更丰富.通过多组序列图像验证了算法的优点,并与原算法进行比较.结果表明,主观评价方面,该改进算法的融合结果自然,在强光背景下能较好地保留暗部细节,减少光源处的光晕;客观评价方面,该算法融合的高动态范围图像的方差和直方图结果明显优于原算法,所保留的信息多于原算法.  相似文献   

4.
针对多曝光图像任务缺乏真值图像,以及现有多曝光图像融合算法存在的边缘特征丢失、细节模糊等问题,本文提出了一种基于注意力机制的多曝光图像融合算法.该算法建立权重独立的双通道Unet网络,对目标场景不同曝光图像分别进行特征提取,生成不同曝光图像的高维多尺度特征图;通过视觉注意力机制凸显目标场景在不同曝光下对融合有利的特征,...  相似文献   

5.
6.
为更好地保留原图像信息,提高图像融合性能,提出一种改进VGG卷积神经网络与边缘像素统计特征相结合的融合算法。首先,该算法将完整图像拆分成图像块,以图像块的预处理来获取较高的图像分类,精度达到0.985以上,以改进的VGG卷积神经网络来加快模型收敛速度,当图像块输入到网络当中,可以初步得到二分类的权值矩阵。其次,在高频细节部分,对于左聚焦图像和右聚焦图像的清晰模糊模块分别进行模糊化处理,根据像素点之间的统计特征经阈值分割后得到有明显边界的权值矩阵。最后,结合两次分割的权值矩阵,通过加权求和的融合策略,得到处处清晰的聚焦图像。为说明算法有效性,在实验部分展示其融合主观视觉效果图与信息熵等客观评价,该算法对比其他算法表现突出,可较好地保留原图像的信息。  相似文献   

7.
将多尺度变换和“高频取大、低频加权平均”融合规则相结合是融合双波段图像的有效方法。但用该类方法融合多波段图像时,序贯式加权常常会导致原图像间固有的差异信息在融合图像中被弱化,从而影响后续的目标识别和场景理解。该问题在融合具有纹理特征的多波段图像时更为突出。为此,提出了一个基于嵌入式多尺度分解和可能性理论的多波段纹理图像融合新方法。首先,利用一种多尺度变换方法把多波段原图像分别分解为高频和低频成分,并对多波段图像中标准差最大的一幅原图像的低频成分利用另一种多尺度方法进行分块,再以该分块图像的大小和位置为标准对其余波段的原图像进行分块。然后,基于可能性理论的相关融合规则逐一融合对应的多波段块图像,再把块融合图像进行拼接,以拼接结果作为低频融合图像。最后,将该低频融合图像和利用取大规则融合得到的高频成分一起通过多尺度逆变换获得最终的融合图像。这种方法不仅将像素级和特征级融合方法综合在一起, 而且将空间域和变换域技术综合在一起, 并通过对大小块采用不同融合规则解决了目标边缘的锯齿效应问题。实验表明该方法效果显著。  相似文献   

8.
基于改进的空域相关的多聚焦图像融合   总被引:1,自引:1,他引:1  
提出了一种简单有效的像素级多聚焦图像融合方法。针对正交小波变换缺乏平移不变性而产生视觉失真的缺陷,采用Atrous算法将原图像分解在不同频率域上。Atrous算法先将滤波器h0(n),h1(n)各点间插入适当的零值后再与低频信号做卷积,故又称为"多孔算法"。将具有抑制噪声性能的空阈相关法作为高频子图像的融合规则,选取相关性强边缘特征显著的点作为最终融合子图像的像素点。实验表明,由此融合的图像能完好的保留边缘纹理信息。融合后的图像在客观评价和主管视觉效果上均有提高。  相似文献   

9.
为解决原始单源图像缺乏多尺度细节信息和图像融合后出现的噪声问题,提出了一种基于小波变换的多尺度图像融合增强算法,根据不同频率子带分量采用不同融合规则的思想,对高频子带提出了三种融合方法,同时构建了一种新颖的多尺度残差金字塔空间并将其参与融合过程,以减少融合噪声.多种小波分解和对比实验结果表明,提出的小波多尺度融合增强算...  相似文献   

10.
提出了一种保持图像细节和高抗噪性的图像融合新方法。这种方法首先对源图像进行多尺度形态学开闭滤波,得到源图像的低频平滑图像;然后应用多尺度Top-hat变换和Bottom-hat变换来提取小于相应尺度的图像细节特征。因为在较小的尺度特征中包含噪声颗粒的可能性较大,据此修正了Top-hat变换和Bottom-hat变换的相应系数;最后对以上两步骤得到的低频平滑图像和多尺度高频细节图像分别进行图像融合,应用形态学重建过程生成融合图像。实验表明,这种融合方法具有图像细节保持完整和噪声消除效果好的优点,处理效果优于传统的图像融合方法。  相似文献   

11.
针对多聚焦图像,提出一种基于图像分块的融合方法。将源图像分为大小相同数量相等的子块,采用能量梯度算子作为对焦评价函数,计算各个图像子块能量梯度匹配度,设置匹配度阈值分离出源图像中的清晰区域。源图像中的清晰区域直接作为融合图像相应的区域,其它区域的处理中,构造与相应子块能量梯度大小相关的图像序列,以及像素点到各个子块中心距离相关的融合函数,然后用融合函数对图像序列融合。实验结果表明该方法有效性和合理性。  相似文献   

12.
多尺度形态算子融合图像滤波技术及滤波质量评价   总被引:1,自引:0,他引:1  
宗思光  王江安 《光学学报》2005,25(9):176-1180
针对舰载红外警戒系统的红外和电视图像,提出了一种新的海空背景下受强杂波、噪声污染的图像目标滤波算法和滤波效果的定量评价算子。算法采用多尺度的形态算子对输入的图像并行滤波,大尺度形态算子抑制图像噪声,小尺度形态算子提取目标边缘细节信息。处理后的图像进行基于树状小波帧变换的图像信息融合,融合图像可完备提取不同尺度滤波后的图像信息。针对目标检测跟踪的图像滤波算法的评价,提出了目标与背景的交叉分辨力评价算子及评价准则。仿真实验表明。该滤波算法要优于中值滤波、自适应滤波、小波变换滤波算法,滤波质量的定量评价算法是合理的、有效的。算法适用于舰载红外警戒系统。  相似文献   

13.
基于亚像素区域加权能量特征的多尺度图像融合算法   总被引:4,自引:0,他引:4  
对矩形和圆形区域中各像素进行亚像素划分,确定各亚像素的权值,得到基于哑像素的综合加权区域能量.融合箅法首先对源图像进行金字塔分解,然后对金字塔的高频细节分量使用基于哑像素加权区域能量特征的融合规则取大,对低频粗糙分量取平均.得到融合图像的塔形分解,最后重构融合图像.仿真结果表明,新算法融合效果较常规的区域能量特征作为融合规则的多分辨率图像融合算法效果更好,从清晰度和熵的评价来看,提高了融合图像的品质.  相似文献   

14.
基于多尺度对比度塔的图像融合方法及性能评价   总被引:41,自引:6,他引:41  
刘贵喜  杨万海 《光学学报》2001,21(11):336-1342
给出了一种新的基于对比度塔形分解的分层图像融合方法,其基本思想是先对源图像进行对比度塔形分解,其次,按照融合规则,采用基于区域特性量测的加权算子去构造融合图像对应的对比度金字塔,最后,通过逆塔形变换重构融合图像。该方法被成功地用于图像的融合处理,此外,利用熵,交叉熵,互信息,均方根误差,峰值信噪比等参量,对该融合方法的融合性能进行了评价与分析,实验结果表明,该融合方法是十分有效的。  相似文献   

15.
针对现有基于transformer的方法未能充分融合遥感图像多尺度特征的问题,提出一种多光谱-全色融合网络。在融合网络中嵌入一个基于改进Swin transformer的多尺度窗口自注意力模块,在关注全局空间特征的同时,充分融合不同尺寸的特征信息,从而最大程度地保留光谱和空间结构信息。通过不同层级特征的跳跃连接,解码网络预测出原始多光谱图像缺失的纹理部分,最终使用细节注入模型恢复出目标图像。为了提升融合效果,在损失函数中加入了光谱损失和空间结构损失。与其他方法相比,本文提出的方法在WorldView-4、QuickBird和WorldView-2三种卫星数据集的主观视觉效果最好,相比于性能第二的方法,本文方法在三种数据集的相对全局误差指标分别减小了11.99%、0.4%和3.43%。  相似文献   

16.
一种基于小波变换的多尺度多算子图像融合方法   总被引:14,自引:0,他引:14  
图像融合技术以其综合多传感器信息的优越性日益受到诸多领域的重视。为了使其应用在医学、遥感、计算机视觉、气象预报、军事目标识别等方面更迅速、深入地开展,有效、实用的融合算法是至关重要的。本文在小波变换金字塔结构的基础上,提出了一种多尺度多算子融合方法,对热红外图像和可见光图像的融合进行了研究。结果融合效果很好,目标和背景区别显著,而且边缘不突兀。由于这种方法对小波分解的层数要求不高,因此计算量不大,便于并行处理及硬件实时化实现,具有广阔的应用前景。  相似文献   

17.
视网膜微动脉瘤的检测对于早期发现糖尿病视网膜病变等重要疾病至关重要,但该病灶尺寸相对较小,属于眼底图像中的微小目标,现有的微动脉瘤检测算法难以实现该病灶的精准检测,为此提出了基于多特征尺度融合的改进Faster-RCNN微动脉瘤自动检测算法。该算法在Faster-RCNN网络模型的基础上,首先采用多特征尺度融合对特征提取网络与RPN结构进行改进以提高网络对于微小目标特征的利用;然后,通过感兴趣区域齐平池化以消除感兴趣区域池化过程中引入的量化误差;最后,通过对损失函数中的smooth L1损失函数进行重新设计得到平衡L1损失函数以实现损失函数优化,从而有效降低大梯度难学样本与小梯度易学样本间的不平衡问题,进而使得模型能够得到更好地训练。针对眼底图像中微动脉瘤的自动检测,将优化后的Faster-RCNN网络模型在Kaggle数据集上进行训练及测试,并与其他方法进行对比。实验结果表明,与其他各种结构的Faster-RCNN网络模型相比,所提出的基于多特征尺度融合的改进Faster-RCNN算法能显著提高检测结果(F-score与原始FasterRCNN相比提升了9.36%);与其他网络模型以...  相似文献   

18.
提出了一种新的运动目标检测方法,这种方法可以有效的提取目标轮廓。应用一种图像差分技术得到运动目标的初始轮廓线。使用了动态轮廓线使其收敛到目标轮廓。提出了一种新的目标轮廓特征级融合方法,求解两类模式图像的收敛动态轮廓线控制点向量差的范数平方极小化。这种方法不需要图像配准降低了融合的计算复杂度,有效提高了可见光图像中目标轮廓提取的精度。对比检测实验证实了算法的有效性。设计了一种基于Newmark方法的动态轮廓线快速迭代算法,将该方法和方法作了比较,对比实验表明这种方法的时间复杂度降低了22%。  相似文献   

19.
生物特征识别在信息安全领域发挥着重要作用,掌纹识别作为一种新型生物特征识别方式,具有低失真、非侵入性和高唯一性等优势。传统掌纹研究大多使用自然光成像系统以灰度格式获取,识别精度很难进一步提升。为了获得更多的身份鉴别信息,提出利用多光谱掌纹图像代替自然光掌纹图像。针对现有掌纹识别算法由于没有考虑到不同光谱的特性而导致纹理细节丢失,识别精准率低的问题,提出了一种基于多光谱图像融合的掌纹识别算法。该方法通过对不同光谱下的掌纹图像进行快速自适应二维经验模式分解(FABEMD),将多光谱掌纹图像分解成一系列频率由高到低的二维固有模态函数(BIMF)和一个残余分量,残余分量可被视为该光谱图像低频信息的初步估计。图像采集过程中光照条件很难保持稳定,而近红外光谱图像在进行FABEMD分解时对光照变换敏感,容易导致分解后的BIMF背景信息过于冗余;因此对分解后的近红外掌纹图像进行背景重建及特征细化,在对背景冗余信息进行平滑处理的同时可以有效增强高频信息的特征表达。为避免直接融合处理后引发的图像过度曝光问题,提出对近红外特征压缩后再融合。此外,提出了一种结合了注意力机制的改进残差网络(IRCANet),用于融合后的掌纹图像分类,在网络中引入分阶段残差结构,缓解了网络的退化问题,在学习过程中有效地减少信息丢失,对于融合后的多光谱掌纹图像,分阶段残差结构能够稳定地将图像信息在网络间传输,但对图像中的高低频信息区分效果不够显著,为了使网络关注更多区分性特征,利用特征通道间的相互依赖性,在分阶段残差结构中结合了通道注意力(Channel Attention)机制。最终,在香港理工大学(PolyU)多光谱掌纹数据集上进行的综合实验表明,该方法可以取得良好的效果,算法识别准确率能达到99.67%且具有良好的实时性。  相似文献   

20.
一种自适应的多光谱图像与全光图像融合新方法   总被引:2,自引:4,他引:2  
狄红卫  陈木生 《光子学报》2005,34(3):452-454
对于不同多光谱图像与全光图像的融合,目前一些融合算法在光谱信息和分辨率上不能同时得到较好的融合效果.针对这一问题,提出一种新的自适应图像融合方法.实验结果表明,该方法不仅能够较好地保留融合图像的光谱信息和提高空间分辨率,而且具有较强的自适应性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号