首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop an efficient method for pricing European options with jump on a single asset. Our approach is based on the combination of two powerful numerical methods, the spectral domain decomposition method and the Laplace transform method. The domain decomposition method divides the original domain into sub-domains where the solution is approximated by using piecewise high order rational interpolants on a Chebyshev grid points. This set of points are suitable for the approximation of the convolution integral using Gauss–Legendre quadrature method. The resulting discrete problem is solved by the numerical inverse Laplace transform using the Bromwich contour integral approach. Through rigorous error analysis, we determine the optimal contour on which the integral is evaluated. The numerical results obtained are compared with those obtained from conventional methods such as Crank–Nicholson and finite difference. The new approach exhibits spectrally accurate results for the evaluation of options and associated Greeks. The proposed method is very efficient in the sense that we can achieve higher order accuracy on a coarse grid, whereas traditional methods would required significantly more time-steps and large number of grid points.  相似文献   

2.
This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point singular boundary value problems arising in science and engineering. The essence of the approach is to split the domain of the problem into a number of nonoverlapping subdomains. In each subdomain, a method based on a combination of HPM and integral equation formalism is implemented. The boundary condition at the right endpoint of each inner subdomain is established before deriving an iterative scheme for the components of the solution series. The accuracy and efficiency of the DDHPM are demonstrated by 4 examples (2 nonlinear and 2 linear). In comparison with the traditional HPM, the proposed domain decomposition HPM is highly accurate.  相似文献   

3.
An example is given to show the inadequacy of a well-known result, concerning the parametric decomposition theorem for multiobjective optimization problems. We also give an accurate decomposition theorem, which generalizes a corrected reformulation of this result.  相似文献   

4.
Lihong Feng  Peter Benner 《PAMM》2007,7(1):1021501-1021502
A robust algorithm for computing reduced-order models of parametric systems is proposed. Theoretical considerations suggest that our algorithm is more robust than previous algorithms based on explicit multi-moment matching. Moreover, numerical simulation results show that the proposed algorithm yields more accurate approximations than traditional non-parametric model reduction methods and parametric model reduction methods based on explicitly computing moments. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We propose a two-moment three-parameter decomposition approximation of general open queueing networks by which both autocorrelation and cross correlation are accounted for. Each arrival process is approximated as an exponential residual (ER) renewal process that is characterized by three parameters: intensity, residue, and decrement. While the ER renewal process is adopted for modeling autocorrelated processes, the innovations method is used for modeling the cross correlation between randomly split streams. As the interarrival times of an ER renewal process follow a two-stage mixed generalized Erlang distribution, viz., MGE(2), each station is analyzed as an MGE(2)/G/1 system for the approximate mean waiting time. Variability functions are also used in network equations for a more accurate modeling of the propagation of cross correlations in queueing networks. Since an ER renewal process is a special case of a Markovian arrival process (MAP), the value of the variability function is determined by a MAP/MAP/1 approximation of the departure process. Numerical results show that our proposed approach greatly improves the performance of the parametric decomposition approximation of open queueing networks.  相似文献   

6.
We study the problem of optimizing over parameters a particular real root of a polynomial with parametric coefficients. We propose an efficient symbolic method for solving the optimization problem based on a special cylindrical algebraic decomposition algorithm, which asks for a semi-algebraic decomposition into cells in terms of number-of-roots-invariance.  相似文献   

7.
The piecewise algebraic variety is the set of all common zeros of multivariate splines. We show that solving a parametric piecewise algebraic variety amounts to solve a finite number of parametric polynomial systems containing strict inequalities. With the regular decomposition of semi-algebraic systems and the partial cylindrical algebraic decomposition method, we give a method to compute the supremum of the number of torsion-free real zeros of a given zero-dimensional parametric piecewise algebraic variety, and to get distributions of the number of real zeros in every n-dimensional cell when the number reaches the supremum. This method also produces corresponding necessary and sufficient conditions for reaching the supremum and its distributions. We also present an algorithm to produce a necessary and sufficient condition for a given zero-dimensional parametric piecewise algebraic variety to have a given number of distinct torsion-free real zeros in every n-cell in the n-complex. This work was supported by National Natural Science Foundation of China (Grant Nos. 10271022, 60373093, 60533060), the Natural Science Foundation of Zhejiang Province (Grant No. Y7080068) and the Foundation of Department of Education of Zhejiang Province (Grant Nos. 20070628 and Y200802999)  相似文献   

8.
We present a new generic minimum cross-entropy method, called the semi-iterative MinxEnt, or simply SME, for rare-event probability estimation, counting, and approximation of the optimal solutions of a broad class of NP-hard linear integer and combinatorial optimization problems (COP’s). The main idea of our approach is to associate with each original problem an auxiliary single-constrained convex MinxEnt program of a special type, which has a closed-form solution. We prove that the optimal pdf obtained from the solution of such a specially designed MinxEnt program is a zero variance pdf, provided the “temperature” parameter is set to minus infinity. In addition we prove that the parametric pdf based on the product of marginals obtained from the optimal zero variance pdf coincides with the parametric pdf of the standard cross-entropy (CE) method. Thus, originally designed at the end of 1990s as a heuristics for estimation of rare-events and COP’s, CE has strong connection with MinxEnt, and thus, strong mathematical foundation. The crucial difference between the proposed SME method and the standard CE counterparts lies in their simulation-based versions: in the latter we always require to generate (via Monte Carlo) a sequence of tuples including the temperature parameter and the parameter vector in the optimal marginal pdf’s, while in the former we can fix in advance the temperature parameter (to be set to a large negative number) and then generate (via Monte Carlo) a sequence of parameter vectors of the optimal marginal pdf’s alone. In addition, in contrast to CE, neither the elite sample no the rarity parameter is needed in SME. As result, the proposed SME algorithm becomes simpler, faster and at least as accurate as the standard CE. Motivated by the SME method we introduce a new updating rule for the parameter vector in the parametric pdf of the CE program. We show that the CE algorithm based on the new updating rule, called the combined CE (CCE), is at least as fast and accurate as its standard CE and SME counterparts. We also found numerically that the variance minimization (VM)-based algorithms are the most robust ones. We, finally, demonstrate numerically that the proposed algorithms, and in particular the CCE one, allows accurate estimation of counting quantities up to the order of hundred of decision variables and hundreds of constraints. This research was supported by the Israel Science Foundation (grant No 191-565).  相似文献   

9.
A numerical solution of the generalized Burger’s–Huxley equation, based on collocation method using Radial basis functions (RBFs), called Kansa’s approach is presented. The numerical results are compared with the exact solution, Adomian decomposition method (ADM) and Variational iteration method (VIM). Highly accurate and efficient results are obtained by RBFs method. Excellent agreement with the exact solution is observed while better (or same) accuracy is obtained than other numerical schemes cited in this work.  相似文献   

10.
In this article, we consider three decomposition techniques for permutation scheduling problems. We introduce a general iterative decomposition algorithm for permutation scheduling problems and apply it to the permutation flow shop scheduling problem. We also develop bounds needed for this iterative decomposition approach and compare its computational requirements to that of the traditional branch and bound algorithms. Two heuristic algorithms based on the iterative decomposition approach are also developed. extensive numerical study indicates that the heuristic algorithms are practical alternatives to very costly exact algorithms for large flow shop scheduling problems.  相似文献   

11.
In this paper, we apply a piecewise finite series as a hybrid analytical-numerical technique for solving some nonlinear systems of ordinary differential equations. The finite series is generated by using the Adomian decomposition method, which is an analytical method that gives the solution based on a power series and has been successfully used in a wide range of problems in applied mathematics. We study the influence of the step size and the truncation order of the piecewise finite series Adomian (PFSA) method on the accuracy of the solutions when applied to nonlinear ODEs. Numerical comparisons between the PFSA method with different time steps and truncation orders against Runge-Kutta type methods are presented. Based on the numerical results we propose a low value truncation order approach with small time step size. The numerical results show that the PFSA method is accurate and easy to implement with the proposed approach.  相似文献   

12.
Summary We present a general modeling framework for therobust optimization of linear network problems with uncertainty in the values of the right-hand side. In contrast to traditional approaches in mathematical programming, we use scenarios to characterize the uncertainty. Solutions are obtained for each scenario and these individual scenarios are aggregated to yield a nonanticipative or implementable policy that minimizes the regret of wrong decisions. A given solution is termed robust if it minimizes the sum over the scenarios of the weighted upper difference between the objective function value for the solution and the objective function value for the optimal solution for each scenario, while satisfying certain nonanticipativity constraints. This approach results in a huge model with a network submodel per scenario plus coupling constraints. Several decomposition approaches are considered, namely Dantzig-Wolfe decomposition, various types of Benders decomposition and different quadratic network approaches for approximating Augmented Lagrangian decomposition. We present computational results for these methods, including two implementation versions of the Lagrangian based method: a sequential implementation and a parallel implementation on a network of three workstations.  相似文献   

13.
A new parametric representation for the general quasiseparable matrix is derived, based on the ideas from the multipole method. It uses functional expansions and successive skeleton approximations, approximations, but finally is formulated in the matrix language. The number of parameters is linear in the dimension of the matrix and in the quasiseparable rank. Stable numerical algorithm is provided for the computation of parameters, defining the decomposition. Numerical examples illustrate the effectiveness of our approach.  相似文献   

14.
In this article, we present a modification of the domain decompositionmethod of Descloux and Tolley for planar eigenvalue problems.Instead of formulating a generalized eigenvalue problem, ourmethod is based on the generalized singular value decomposition.This approach is robust and at the same time highly accurate.Furthermore, we give an improved convergence analysis basedon results from complex approximation theory. Several examplesshow the effectiveness of our method.  相似文献   

15.
We consider the discretization of a stationary Stokes interface problem in a velocity-pressure formulation. The interface is described implicitly as the zero level of a scalar function as it is common in level set based methods. Hence, the interface is not aligned with the mesh. An unfitted finite element discretization based on a Taylor-Hood velocity-pressure pair and an XFEM (or CutFEM) modification is used for the approximation of the solution. This allows for the accurate approximation of solutions which have strong or weak discontinuities across interfaces which are not aligned with the mesh. To arrive at a consistent, stable and accurate formulation we require several additional techniques. First, a Nitsche-type formulation is used to implement interface conditions in a weak sense. Secondly, we use the ghost penalty stabilization to obtain an inf-sup stable variational formulation. Finally, for the highly accurate approximation of the implicitly described geometry, we use a combination of a piecewise linear interface reconstruction and a parametric mapping of the underlying mesh. We introduce the method and discuss results of numerical examples. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
王定康  张岩 《数学学报》2006,49(2):241-248
本文提出一种利用多项式系统的正规零点分解的算法来求解代数方程组以及带有参数的代数方程组的方法.对于给定的的代数方城组,通过正规分解,可以得到一组具有三角形式的分解.根据这种三角形式,我们可以给出代数方程组的所有解.而对于带有参数方程组,将给出方程组有解时参数需满足的条件.进一步,对于给定的参数值,正规分解中得到三角形式仍然保持,通过求解三角形式的方程组从而得出原参数方程组的解.  相似文献   

17.
We develop a multi-element probabilistic collocation method (ME-PCM) for arbitrary discrete probability measures with finite moments and apply it to solve partial differential equations with random parameters. The method is based on numerical construction of orthogonal polynomial bases in terms of a discrete probability measure. To this end, we compare the accuracy and efficiency of five different constructions. We develop an adaptive procedure for decomposition of the parametric space using the local variance criterion. We then couple the ME-PCM with sparse grids to study the Korteweg–de Vries (KdV) equation subject to random excitation, where the random parameters are associated with either a discrete or a continuous probability measure. Numerical experiments demonstrate that the proposed algorithms lead to high accuracy and efficiency for hybrid (discrete–continuous) random inputs.  相似文献   

18.
We report a computational study of two-stage SP models on a large set of benchmark problems and consider the following methods: (i) Solution of the deterministic equivalent problem by the simplex method and an interior point method, (ii) Benders decomposition (L-shaped method with aggregated cuts), (iii) Regularised decomposition of Ruszczy??ski (Math Program 35:309?C333, 1986), (iv) Benders decomposition with regularization of the expected recourse by the level method (Lemaréchal et al. in Math Program 69:111?C147, 1995), (v) Trust region (regularisation) method of Linderoth and Wright (Comput Optim Appl 24:207?C250, 2003). In this study the three regularisation methods have been introduced within the computational structure of Benders decomposition. Thus second-stage infeasibility is controlled in the traditional manner, by imposing feasibility cuts. This approach allows extensions of the regularisation to feasibility issues, as in Fábián and Sz?ke (Comput Manag Sci 4:313?C353, 2007). We report computational results for a wide range of benchmark problems from the POSTS and SLPTESTSET collections and a collection of difficult test problems compiled by us. Finally the scale-up properties and the performance profiles of the methods are presented.  相似文献   

19.
This paper extends recent developments on spectral sequence approach on the simplest normal form theory to parametric cases. In this paper, the method is first applied to two simple examples (parametric single zero and parametric resonant saddle singularities) and then, to parametric generalized Hopf singularity. We provide the simplest parametric normal form for these cases.  相似文献   

20.
腾飞  孙萍  罗振东 《计算数学》2011,33(4):373-386
本文将特征正交分解(Proper Orthogonal Decomposition,简记为POD)方法应用于抛物型方程通常时间二阶中心差的时间二阶精度有限元格式(简称为通常格式),简化其为一个自由度极少但具有时间二阶精度的有限元格式,并给出简化的时间二阶中心差的时间二阶精度有限元格式(简称为简化格式)解的误差分析.数值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号