首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis  相似文献   

2.
An efficient simulation approach for turbulent flame brush propagation is a level set formulation closed by the turbulent flame speed. A formulation of the level set equation with the corresponding treatment of the turbulent mass burning rate that is compatible with standard Finite Volume discretization schemes available in computational fluid dynamics codes is employed. In order to simplify and to speed up the meshing process in complicated geometries (here in gas engines) the immersed boundary method in a continuous formulation, where the forces replacing the boundaries are introduced in the momentum conservation equations before discretization, is employed. In our contribution, aspects of the numerical implementation of the level set flame model combined with the immersed boundary formulation in OpenFOAM are presented. First representative simulation results of a homogeneous methane/air mixture combustion in a simplified engine geometry are shown. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
This paper describes a detailed implementation of the Synthetic Eddy Method (SEM) initially presented in Jarrin et al. (2006) applied to the Lagrangian Vortex simulation. While the treatment of turbulent diffusion is already extensively covered in scientific literature, this is one of the first attempts to represent ambient turbulence in a fully Lagrangian framework. This implementation is well suited to the integration of PSE (Particle Strength Exchange) or DVM (Diffusion Velocity Method), often used to account for molecular and turbulent diffusion in Lagrangian simulations. The adaptation and implementation of the SEM into a Lagrangian method using the PSE diffusion model is presented, and the turbulent velocity fields produced by this method are then analysed. In this adaptation, SEM turbulent structures are simply advected, without stretching or diffusion of their own, over the flow domain. This implementation proves its ability to produce turbulent velocity fields in accordance with any desired turbulent flow parameters. As the SEM is a purely mathematical and stochastic model, turbulent spectra and turbulent length scales are also investigated. With the addition of variation in the turbulent structures sizes, a satisfying representation of turbulent spectra is recovered, and a linear relation is obtained between the turbulent structures sizes and the Taylor macroscale. Lastly, the model is applied to the computation of a tidal turbine wake for different ambient turbulence levels, demonstrating the ability of this new implementation to emulate experimentally observed tendencies.  相似文献   

4.
The effects of wall-normal single point oscillations in turbulent boundary layers at very high Reynolds number are investigated by numerical simulation. The impact on the friction drag and on the turbulent structures is analyzed. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
I. Oti&#x;  G. Grtzbach 《PAMM》2004,4(1):490-491
Results of a new direct numerical simulation (DNS) for the Rayleigh‐Bénard convection at Prandtl number Pr = 0.025 and Rayleigh number Ra = 100,000 are used to analyse the turbulent diffusion term in the transport equation for the temperature variance dissipation rate. These DNS results are also used to investigate the performance of statistical models for this turbulent diffusion term. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.  相似文献   

7.
IntroductionIn previous worksll,2], we discussed several issues associated with the standard version oflarge eddy simulation (LES) such as filtering and averaging. By the standard version, we meanthe traditional practice of first constructing a set of field equations of motions for turbulentmotion and then discretizing the equations to suit computational simulations.In this paper, we revisit the issue of large eddy simulation with a view towards improvingthe filtering procedure that is used i…  相似文献   

8.
The paper describes a state-of-the-art hybrid LES-URANS method for the simulation of complex internal and external turbulent flows. Relying on a unified LES-URANS approach with a soft interface the methodology is designed for wall-bounded non-equilibrium flows. The unsteady Reynolds-averaged Navier-Stokes (URANS) mode within the hybrid approach is taken into account by an explicit algebraic Reynolds stress model (EARSM), which guarantees an appropriate representation of the anisotropic near-wall turbulence. All non-closed terms in the transport equation of the turbulent kinetic energy are modeled by enhanced formulations using the EARSM (production and diffusion term) and the splitting of the dissipation rate into a homogeneous and an inhomogeneous contribution. The former is expressed analytically by a Taylor series expansion of the homogeneous lateral Taylor microscale in the vicinity of the wall guaranteeing the correct asymptotic behavior. The latter is incorporated into the diffusion term. The interface location between the large-eddy simulation (LES) mode and the URANS mode is determined automatically on-the-fly based on the modeled turbulent kinetic energy and the distance to the wall. For transitional (external) flows an additional dynamic transition criterion is applied which determines the laminar and the turbulent flow regimes and is combined with the existing interface criterion. An internal flow over a periodic arrangement of hills and an external flow past a SD7003 airfoil with a laminar separation bubble are taken into account for a detailed evaluation of the method. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
10.
Sigrun Ortleb 《PAMM》2017,17(1):531-532
In the context of mechanical fluid-structure interaction (FSI) comprising moving or deforming structures, fluid discretizations need to cope with time-dependent fluid domains and resulting grid deformations in addition to the general challenges regarding e.g. boundary layers and turbulent phenomena. Recent approaches in the simulation of compressible turbulent flow are based on so-called split forms of conservation laws to guarantee the preservation of secondary physical quantities such as kinetic energy. For the simulation of turbulent flows, this often leads to a better representation of the kinetic energy spectrum. Initially, kinetic energy preserving(KEP) DG schemes have been constructed on Gauss-Legendre-Lobatto(GLL) nodes containing the interval end points, however, KEP DG schemes based on the classical Gauss-Legendre(GL) nodes are potentially more accurate and may be also more efficient than its GLL variant for certain applications. In this work, the KEP-DG schemes both on GL and GLL nodes are applied to the classical moving piston test case via an ALE formulation on moving fluid grids showing a more accurate frequency representation of the structure displacement in case of GLL nodes. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A spectral element—Fourier method (SEM) for Direct Numerical Simulation (DNS) of the turbulent flow of non-Newtonian fluids is described and the particular requirements for non-Newtonian rheology are discussed. The method is implemented in parallel using the MPI message passing kernel, and execution times scale somewhat less than linearly with the number of CPUs, however this is more than compensated by the improved simulation turn around times. The method is applied to the case of turbulent pipe flow, where simulation results for a shear-thinning (power law) fluid are compared to those of a yield stress (Herschel–Bulkley) fluid at the same generalised Reynolds number. It is seen that the yield stress significantly dampens turbulence intensities in the core of the flow where the quasi-laminar flow region there co-exists with a transitional wall zone. An additional simulation of the flow of blood in a channel is undertaken using a Carreau–Yasuda rheology model, and results compared to those of the one-equation Spalart-Allmaras RANS (Reynolds-Averaged Navier–Stokes) model. Agreement between the mean flow velocity profile predictions is seen to be good. Use of a DNS technique to study turbulence in non-Newtonian fluids shows great promise in understanding transition and turbulence in shear thinning, non-Newtonian flows.  相似文献   

12.
The paper describes numerical prediction of aerodynamic noise generated from an Aircraft. Simulation of turbulent flow is done solving the incompressible Navier-Stokes equation, where turbulence is modeled applying the orthogonal subgrid scale (OSGS) method with dynamical subscales. Because of comparison, the same simulation is done using the LES (Large Eddy simulation). It is shown how simulation of turbulent flow affects the prediction of acoustic sources calculated using Lighthill's analogy. Translation from the time to frequency domain is done through DFT (Direct Fourier Transform), which gives smaller usage of memory. Acoustic sources are used in the inhomogeneous Helmholtz equation to simulate pressure wave propagation in the domain. It is shown that OSGS with dynamical subscales gives better representation of the spectrum. Overall, better prediction of energy transfer across large and small eddies will give better allocation and presentation of acoustics sources. These sources will change wave propagation of the pressure in the acoustic field. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
A method is devised to simulate the movement and spreading of a patch of contaminant in two-dimensional turbulent flow. The turbulent motion is exponentially divided into components of differing wave number, adjacent components being made to have correlation times differing by a factor of two. The turbulent motion is then reconstructed by replacing each component with a sinusoidal advection field having a randomly directed wave number. Contaminant particles are advected by each of the reconstructed components, the smallest scale components being applied first. A computer simulation was performed, using a Kolmogorov k-53 turbulent energy spectrum. Batchelor's σt32 law for the spreading of a contaminant patch was reproduced, approximately, as was Richardson's non-Gaussian asymptotic form of the distance-neighbour function.  相似文献   

15.
This paper deals with the mathematical modeling and simulation of crystal growth processes by the so-called Czochralski method and related methods, which are important industrial processes to grow large bulk single crystals of semiconductor materials such as, e. g., silicon (Si) or gallium arsenide (GaAs) from the melt. In particular, we investigate a recently developed technology in which traveling magnetic fields are applied in order to control the behavior of the turbulent melt flow. Since numerous different physical effects like electromagnetic fields, turbulent melt flows, high temperatures, heat transfer via radiation, etc., play an important role in the process, the corresponding mathematical model leads to an extremely difficult system of initial-boundary value problems for nonlinearly coupled partial differential equations. In this paper, we describe a mathematical model that is under use for the simulation of real-life growth scenarios, and we give an overview of mathematical results and numerical simulations that have been obtained for it in recent years.  相似文献   

16.
A theoretical and numerical study using the unsteady, 3D Navier-Stokes equations to generate axisymmetric vortex rings is reported. Increasing the vorticity, the vortex ring transition to a turbulent state are analyzed. After transition to a turbulent stage, the self-similarity of the temporal evolution of the flow is observed. Then we can compare sound radiated by the vortex ring to jet noise, at similar Reynolds number and low Mach number. The agreement between the simulation results and the simplified model is good. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Fluid motion in many applications occurs at higher Reynolds numbers. In these applications dealing with turbulent flow is thus inescapable. One promising approach to the simulation of the motion of the large structures in turbulent flow is large eddy simulation in which equations describing the motion of local spatial averages of the fluid velocity are solved numerically. This report considers “numerical errors” in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 689–710, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10027.  相似文献   

18.
In many technical applications turbulent flows with embedded slender vortices exist. Depending on the boundary conditions vortex breakdown can occur. The purpose of this work is to develop and implement a solution scheme for large‐eddy simulations of vortex breakdown in turbulent pipe flows. One of the main problems in this simulation is the formulation of the inflow boundary condition for a fully developed turbulent flow with an embedded vortex. For that purpose a rescaling technique is developed in which a solution at a downstream location is inserted at the inflow boundary after an appropriate rescaling. To determine rescaling laws for pipe flows with an embedded vortex, analytical velocity profiles of swirling flows are first prescribed in a laminar flow. From the spatial development of the vortex a scaling law is deduced. In a next step this procedure is to be transferred to turbulent flows.  相似文献   

19.
The k-ε-Sp model, describing two-dimensional gas–solid two-phase turbulent flow, has been developed. In this model, the diffusion flux and slip velocity of solid particles are introduced to represent the particle motion in two-phase flow. Based on this model, the gas–solid two-phase turbulent flow behind a vertical backward-facing step is simulated numerically and the turbulent transport velocities of solid particles with high density behind the step are predicted. The numerical simulation is validated by comparing the results of the numerical calculation with two other two-phase turbulent flow models (k-ε-Ap, k-ε-kp) by Laslandes and the experimental measurements. This model, not only has the same virtues of predicting the longitudinal transport of the solid particles as the present practical two-phase flow models, but also can predict the lateral transport of the solid particles correctly.  相似文献   

20.
本文应用谱分析理论研究了剪切湍流场中的压力脉动,包括功率谱、均方值等.通过对压力脉动Possion方程的Fourier变换,首先将压力脉动谱表示成速度脉动谱的形式.利用Navier-Stokes方程的形式解及准正态分布假设,可以进一步将压力脉动功率谱表达式中所包含的速度脉动的三阶相关与四阶相关表示成速度脉动的二阶相关(功率谱).最后,引入高雷诺数流的速度脉动功率谱模型,导出了由湍动e0,耗散ε,雷诺应力-iuj>及时均速度梯度表示的压力脉动均方值的湍流模式,并同现有数据进行了比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号