首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of robot or character motion tracking algorithms is inherently a challenging task. This is more than ever true when the latest trends in motion tracking are considered. Some researchers can deal with kinematic and dynamic constraints induced by the mechanical structure. Another class of researchers fulfills various types of optimality conditions, yet others include means of dealing with uncertainties about the robot or character and its environment. In order to deal with the complexity of developing motion tracking algorithms, it is proposed in this paper to design an interactive virtual physics environment with uncertainties for motion tracking based on sliding mode control. The advantages of doing so are outlined and a virtual environment presented which is well suited to support motion tracking development. The environment makes full use of multi-body system dynamics and a robust sliding mode controller independent of model as simulation kernel. So the environment is capable of simulating setups which fulfill the requirements posed by state-of-the-art motion tracking algorithm development. The demonstration results verified the validity of the environment.  相似文献   

2.
In this paper, analogous to chance constraints, real-life necessity and possibility constraints in the context of a multi-item dynamic production-inventory control system are defined and defuzzified following fuzzy relations. Hence, a realistic multi-item production-inventory model with shortages and fuzzy constraints has been formulated and solved for optimal production with the objective of having minimum cost. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the present system produces some defective units along with the perfect ones and the rate of produced defective units is constant. Here demand of the good units is time dependent and known and the defective units are of no use. The space required per unit item, available storage space and investment capital are assumed to be imprecise. The space and budget constraints are of necessity and/or possibility types. The model is formulated as an optimal control problem and solved for optimum production function using Pontryagin’s optimal control policy, the Kuhn–Tucker conditions and generalized reduced gradient (GRG) technique. The model is illustrated numerically and values of demand, optimal production function and stock level are presented in both tabular and graphical forms. The sensitivity of the cost functional due to the changes in confidence level of imprecise constraints is also presented.  相似文献   

3.
In this paper, a new concept of chaos synchronization, which is superior to generalized exponential synchronization, generalized virtual synchronization, and generalized complete synchronization, is firstly introduced and the chaos synchronization of a pair of Duffing-Holmes oscillators with parameter mismatchings, external excitations, and chaotic vibrations is investigated. Based on the time-domain approach with differential inequality, a feedback control is proposed to realize generalized synchronization (generalized exponential synchronization, respectively) for a pair of Duffing-Holmes oscillators without uncertainties (with uncertainties, respectively). In addition, not only the guaranteed exponential convergence rate can be arbitrarily pre-specified but also the critical time can be correctly estimated. Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result.  相似文献   

4.
针对2自由度冗余驱动并联机器人轨迹跟踪控制问题,提出了一种基于Udwadia-Kalaba方程的鲁棒伺服控制方法.在负载、外部干扰以及制造误差的影响下,无法得到机器人精确、完整的运动模型,导致机器人控制性能变差.为解决这类不确定性带来的影响,提出了一种鲁棒控制方法.该方法通过保证系统的一致有界性和一致最终有界性,使系统能够精确跟踪理想约束轨迹.此外,该方法采用Udwadia-Kalaba方程,求解控制过程中满足系统理想约束所需要的约束力.Udwadia-Kalaba方程不需要Lagrange乘子或伪广义速度等辅助变量,可以同时处理完整约束和非完整约束,且可以获得满足轨迹约束的约束力解析解.利用Lyapunov函数对该鲁棒控制方法的稳定性进行了理论证明,并且通过仿真实验,验证了该鲁棒控制方法能够在非理想条件下实现给定轨迹的高精度跟踪控制.  相似文献   

5.
The paper investigates the motion planning of a suspended service robot platform equipped with ducted fan actuators. The platform consists of an RRT robot and a cable suspended swinging actuator that form a subsequent parallel kinematic chain and it is equipped with ducted fan actuators. In spite of the complementary ducted fan actuators, the system is under-actuated. The method of computed torques is applied to control the motion of the robot.The under-actuated systems have less control inputs than degrees of freedom. We assume that the investigated under-actuated system has desired outputs of the same number as inputs. In spite of the fact that the inverse dynamical calculation leads to the solution of a system of differential–algebraic equations (DAE), the desired control inputs can be determined uniquely by the method of computed torques.We use natural (Cartesian) coordinates to describe the configuration of the robot, while a set of algebraic equations represents the geometric constraints. In this modeling approach the mathematical model of the dynamical system itself is also a DAE.The paper discusses the inverse dynamics problem of the complex hybrid robotic system. The results include the desired actuator forces as well as the nominal coordinates corresponding to the desired motion of the carried payload. The method of computed torque control with a PD controller is applied to under-actuated systems described by natural coordinates, while the inverse dynamics is solved via the backward Euler discretization of the DAE system for which a general formalism is proposed. The results are compared with the closed form results obtained by simplified models of the system. Numerical simulation and experiments demonstrate the applicability of the presented concepts.  相似文献   

6.
张凯院  王娇 《数学杂志》2015,35(2):469-476
本文研究了一类Riccati矩阵方程广义自反解的数值计算问题.利用牛顿算法将Riccati矩阵方程的广义自反解问题转化为线性矩阵方程的广义自反解或者广义自反最小二乘解问题,再利用修正共轭梯度法计算后一问题,获得了求Riccati矩阵方程的广义自反解的双迭代算法.拓宽了求解非线性矩阵方程的迭代算法.数值算例表明双迭代算法是有效的.  相似文献   

7.
Biped walking robots present a class of mechanical systems with many different challenges such as nonlinear multi-body dynamics, a large number of degrees of freedom and unilateral contacts. The latter impose constraints for physically feasible motions and in stabilization methods as the robot can only interact due to pressure forces with the environment. This limitation can cause the system to fall under unknown disturbances such as pushing or uneven terrain. In order to face such problems, an accurate and fast model of the robot to observe the current state and predict the state evolution into the future has to be used. This work presents a nonlinear prediction model with two passive degrees of freedom (dof), point masses and compliant unilateral contacts. We show that the model is applicable for real-time model predictive optimization of the robot's motion. Experiments on the biped robot LOLA [1] underline the effectiveness of the proposed model to increase the system's long term stability under large unknown disturbances. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Tai Keun Kwak  Yang Lee 《代数通讯》2013,41(4):1576-1594
Mason introduced the reflexive property for ideals, and then this concept was generalized by Kim and Baik, defining idempotent reflexive right ideals and rings. In this article, we characterize aspects of the reflexive and one-sided idempotent reflexive properties, showing that the concept of idempotent reflexive ring is not left-right symmetric. It is proved that a (right idempotent) reflexive ring which is not semiprime (resp., reflexive), can always be constructed from any semiprime (resp., reflexive) ring. It is also proved that the reflexive condition is Morita invariant and that the right quotient ring of a reflexive ring is reflexive. It is shown that both the polynomial ring and the power series ring over a reflexive ring are idempotent reflexive. We obtain additionally that the semiprimeness, reflexive property and one-sided idempotent reflexive property of a ring coincide for right principally quasi-Baer rings.  相似文献   

9.
10.
We consider a single-machine scheduling problem which arises as a subproblem in a job-shop environment where the jobs have to be transported between the machines by a single transport robot. The robot scheduling problem may be regarded as a generalization of the traveling salesman problem with time windows, where additionally generalized precedence constraints (minimal time-lags) have to be respected. The objective is to determine a sequence of all nodes and corresponding starting times in the given time windows in such a way that all generalized precedence relations are respected and the sum of all traveling and waiting times is minimized.We calculate lower bounds for this problem using constraint propagation techniques and a linear programming formulation which is solved by a column generation procedure. Computational results are presented for test data arising from job-shop instances with a single transport robot and some modified traveling salesman instances.  相似文献   

11.

We characterize generalized derivatives of the solution operator of the obstacle problem. This precise characterization requires the usage of the theory of so-called capacitary measures and the associated solution operators of relaxed Dirichlet problems. The generalized derivatives can be used to obtain a novel necessary optimality condition for the optimal control of the obstacle problem with control constraints. A comparison shows that this system is stronger than the known system of C-stationarity.

  相似文献   

12.
《Optimization》2012,61(3-4):383-405
The mathematical model of an industrial robot with initial value perturbations is considered as a parametric nonlinear control problem subject to control and state constraints. Based on recent stability results for parametric control problems, a robust nonlinear programming method is proposed for computing the sensitivity derivatives of optimal solutions. Real-time control approximations of perturbed optimal solutions are obtained by evaluating a first order Taylor expansion of the perturbed solution. The efficiency of the real-time approximation is demonstrated for the robot model  相似文献   

13.
Practical industrial process is usually a dynamic process including uncertainty. Stochastic constraints can be used for industrial process modeling, when system sate and/or control input constraints cannot be strictly satisfied. Thus, optimal control of switched systems with stochastic constraints can be available to address practical industrial process problems with different modes. In general, obtaining an analytical solution of the optimal control problem is usually very difficult due to the discrete nature of the switching law and the complexity of stochastic constraints. To obtain a numerical solution, this problem is formulated as a constrained nonlinear parameter selection problem (CNPSP) based on a relaxation transformation (RT) technique, an adaptive sample approximation (ASA) method, a smooth approximation (SA) technique, and a control parameterization (CP) method. Following that, a penalty function-based random search (PFRS) algorithm is designed for solving the CNPSP based on a novel search rule-based penalty function (NSRPF) method and a novel random search (NRS) algorithm. The convergence results show that the proposed method is globally convergent. Finally, an optimal control problem in automobile test-driving with gear shifts (ATGS) is further extended to illustrate the effectiveness of the proposed method by taking into account some stochastic constraints. Numerical results show that compared with other typical methods, the proposed method is less conservative and can obtain a stable and robust performance when considering the small perturbations in initial system state. In addition, to balance the computation amount and the numerical solution accuracy, a tolerance setting method is also provided by the numerical analysis technique.  相似文献   

14.
We introduce variation of a vector δx which can be interpreted either as a virtual displacement of a system, or as variation of the velocity of a system, or as variation of the acceleration of a system. This vector is used to obtain a unified form of differential variational principles of mechanics from the scalar representative equations of motion. Conversely, this notation implies the original equations of motion, which enables one to consider the obtained scalar products as principles of mechanics. Using the same logical scheme, one constructs a differential principle on the basis of the vector equation of constrained motion of a mechanical system. In this form of notation, it is proposed to conserve the zero scalar products of reactions of ideal constraints and the vector δx. This enables one to obtain also the equations involving generalized constrained forces from this form of notation.  相似文献   

15.
《Optimization》2012,61(5):1263-1284
In decision-making problems where uncertainty plays a key role and decisions have to be taken prior to observing uncertainty, chance constraints are a strong modelling tool for defining safety of decisions. These constraints request that a random inequality system depending on a decision vector has to be satisfied with a high probability. The characteristics of the feasible set of such chance constraints depend on the constraint mapping of the random inequality system, the underlying law of uncertainty and the probability level. One characteristic of particular interest is convexity. Convexity can be shown under fairly general conditions on the underlying law of uncertainty and on the constraint mapping, regardless of the probability-level. In some situations, convexity can only be shown when the probability-level is high enough. This is defined as eventual convexity. In this paper, we will investigate further how eventual convexity can be assured for specially structured chance constraints involving Copulae. The Copulae have to exhibit generalized concavity properties. In particular, we will extend recent results and exhibit a clear link between the generalized concavity properties of the various mappings involved in the chance constraint for the result to hold. Various examples show the strength of the provided generalization.  相似文献   

16.
基于高斯伪谱的最优控制求解及其应用   总被引:2,自引:0,他引:2  
研究一种基于高斯伪谱法的具有约束受限的最优控制数值计算问题.方法将状态演化和控制规律用多项式参数化近似,微分方程用正交多项式近似.将最优控制问题求解问题转化为一组有约束的非线性规划求解.详细论述了该种近似方法的有效性.作为该种方法的应用,讨论了一个障碍物环境下的机器人最优路径生成问题.将机器人路径规划问题转化为具有约束条件最优控制问题,然后用基于高斯伪谱的方法求解,并给出了仿真结果.  相似文献   

17.
面向具有输入约束的非线性不确定系统,根据输入输出有限增益$L_2$稳定的概念,提出了一种新的鲁棒控制Lyapunov函数.根据此概念,在前期研究的广义逐点最小范数控制的基础上,提出了一种对参数不确定性及外部干扰均具有抑制作用的鲁棒广义逐点最小范数控制器设计方法,并研究了其解析形式的求解方法.通过引入``引导函数",新的算法能够在保证鲁棒稳定性的同时更加灵活的考虑各种控制性能指标.最后,通过将新方法与状态相关Riccati方程非线性控制方法相结合验证该方法可用于提高原有控制器的闭环性能,并通过仿真实验验证了方法的可行性及有效性.  相似文献   

18.
The paper presents a model-based tracking control strategy for constrained mechanical systems. Constraints we consider can be material and non-material ones referred to as program constraints. The program constraint equations represent tasks put upon system motions and they can be differential equations of orders higher than one or two, and be non-integrable. The tracking control strategy relies upon two dynamic models: a reference model, which is a dynamic model of a system with arbitrary order differential constraints and a dynamic control model. The reference model serves as a motion planner, which generates inputs to the dynamic control model. It is based upon a generalized program motion equations (GPME) method. The method enables to combine material and program constraints and merge them both into the motion equations. Lagrange’s equations with multipliers are the peculiar case of the GPME, since they can be applied to systems with constraints of first orders. Our tracking strategy referred to as a model reference program motion tracking control strategy enables tracking of any program motion predefined by the program constraints. It extends the “trajectory tracking” to the “program motion tracking”. We also demonstrate that our tracking strategy can be extended to a hybrid program motion/force tracking.  相似文献   

19.
Dynamic modeling of parallel manipulators presents an inherent complexity, mainly due to system closed-loop structure and kinematic constraints.In this paper, an approach based on the manipulator generalized momentum is explored and applied to the dynamic modeling of a Stewart platform. The generalized momentum is used to compute the kinetic component of the generalized force acting on each manipulator rigid body. Analytic expressions for the rigid bodies inertia and Coriolis and centripetal terms matrices are obtained, which can be added, as they are expressed in the same frame. Gravitational part of the generalized force is obtained using the manipulator potential energy. The computational load of the dynamic model is evaluated, measured by the number of arithmetic operations involved in the computation of the inertia and Coriolis and centripetal terms matrices. It is shown the model obtained using the proposed approach presents a low computational load. This could be an important advantage if fast simulation or model-based real-time control are envisaged.  相似文献   

20.
在自反Banach空间内引入和研究了一类新的涉及广义混合似变分不等式问题的广义混合平衡问题组(SGMEP).首先,为了求解 SGMEP,引入了一类辅助广义混合平衡问题组(SAGMEP).在没有任何强制条件的相当温和假设下, 对SAGMEP证明了解的存在性和唯一性.其次, 利用辅助原理技巧,对求解SGMEP建议和分析了一类新的迭代算法.最后,在没有任何强制条件的相当温和假设下,证明了由算法生成的迭代序列的强收敛性.这些结果改进、统一和推广了这一领域内某些最近结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号