首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variational integrators are symplectic-momentum preserving integrators that are based on a discrete variational formulation of the underlying system. So far, variational integrators have been mainly developed and used for a wide variety of mechanical systems. In this work, we develop a variational integrator for the simulation of electric circuits. An appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. Finally, a corresponding time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. In this way, a variational integrator is constructed that gains several advantages. A comparison to standard integration techniques shows that even for simple LCR circuits a better long-time energy behavior and frequency preservation can be obtained. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Nonlinear electroelastostatics: a variational framework   总被引:2,自引:0,他引:2  
Different formulations of the constitutive laws and governing equations for nonlinear electroelastic solids are reviewed and two new variational principles for electroelastostatics are introduced. One is based on use of the electrostatic scalar potential and one on the vector potential, combined with the deformation function. In each case Lagrangian forms of the electric variables are used. Their connections with several formulations of nonlinear electroelasticity in the literature are established and some differences highlighted.   相似文献   

3.
Different formulations of the constitutive laws and governing equations for nonlinear electroelastic solids are reviewed and two new variational principles for electroelastostatics are introduced. One is based on use of the electrostatic scalar potential and one on the vector potential, combined with the deformation function. In each case Lagrangian forms of the electric variables are used. Their connections with several formulations of nonlinear electroelasticity in the literature are established and some differences highlighted.  相似文献   

4.
The augmented Lagrangian method is attractive in constraint optimizations. When it is applied to a class of constrained variational inequalities, the sub-problem in each iteration is a nonlinear complementarity problem (NCP). By introducing a logarithmic-quadratic proximal term, the sub-NCP becomes a system of nonlinear equations, which we call the LQP system. Solving a system of nonlinear equations is easier than the related NCP, because the solution of the NCP has combinatorial properties. In this paper, we present an inexact logarithmic-quadratic proximal augmented Lagrangian method for a class of constrained variational inequalities, in which the LQP system is solved approximately under a rather relaxed inexactness criterion. The generated sequence is Fejér monotone and the global convergence is proved. Finally, some numerical test results for traffic equilibrium problems are presented to demonstrate the efficiency of the method.   相似文献   

5.
In this paper a new continuous formulation for the zero-one programming problem is presented, followed by an investigation of the algorithm for it. This paper first reformulates the zero-one programming problem as an equivalent mathematical programs with complementarity constraints, then as a smooth ordinary nonlinear programming problem with the help of the Fischer-Burmeister function. After that the augmented Lagrangian method is introduced to solve the resulting continuous problem, with optimality conditions for the non-smooth augmented Lagrangian problem derived on the basis of approximate smooth variational principle, and with convergence properties established. To our benefit, the sequence of solutions generated converges to feasible solutions of the original problem, which provides a necessary basis for the convergence results.  相似文献   

6.
Invariants of reduced forms of a p.d.e. are obtainable from a variational principle even though the p.d.e. itself does not admit a Lagrangian. The reductions carry all the advantages regarding Noether symmetries and double reductions via first integrals or conserved quantities. The examples we consider are nonlinear evolution type equations like the general form of the Fizhugh–Nagumo and KdV–Burgers equations. Some aspects of Painlevé properties of the reduced equations are also obtained.  相似文献   

7.
By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa–Holm system (1). We show that the two-component Camassa–Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.  相似文献   

8.
By using the involutory transformations, the classical variational principle—Hamiltonian principle— of two kinds of variables in general mechanics is advanced and by using undetermined Lagrangian multiplier method, the generalized variational principles and generalized variational principles with subsidiary conditions are established. The stationary conditions of various kinds of variational principles are derived and the relational problems discussed. Project supported by the National Natural Science Foundation of China (Grant No. 19872022) and the Doctoral Education Foundation of China (Grant No. 97021710).  相似文献   

9.
Thermoelastic deflection and corresponding stresses of the pre-damaged layered panel structure are investigated numerically in this article including the large deformation kinematics under the linearly varying temperature field. The composite structural deformation kinematics is derived using two different polynomial type of kinematic theories including the through-thickness stretching effect. The inter-laminar separation between the adjacent layers is incurred via the sub-laminate approach and Green–Lagrange strain to count the total structural deformation. Also, the intermittent displacement continuity conditions are imposed in the current mathematical model to establish the displacement continuity between the separated layers. The variational principle is adopted for the evaluation of the nonlinear structural equilibrium equations and solved via total Lagrangian approach. The convergence and the corresponding validity of the currently derived nonlinear finite element solutions are checked by solving different sets of numerical examples. Additionally, the comprehensive inferences are drawn from various numerical examples for the well-defined important input parameter including the size, position, and location of delamination.  相似文献   

10.
研究了一个强非线性波动方程.利用泛函分析变分迭代方法,首先构造了一个变分, 求出相应的Lagrange乘子;其次构造一个解的变分迭代, 选取初始孤子波;最后利用迭代方法依次求出各次孤子波的近似解.该方法是一个简单可行的近似求解非线性方程的方法  相似文献   

11.
This paper presents a relation between divergence variational symmetries for difference variational problems on lattices and conservation laws for the associated Euler–Lagrange system provided by Noether's theorem. This inspires us to define conservation laws related to symmetries for arbitrary difference equations with or without Lagrangian formulations. These conservation laws are constrained by partial differential equations obtained from the symmetries generators. It is shown that the orders of these partial differential equations have been reduced relative to those used in a general approach. Illustrative examples are presented.  相似文献   

12.
A variational theory for monotone vector fields   总被引:1,自引:0,他引:1  
Monotone vector fields were introduced almost 40 years ago as nonlinear extensions of positive definite linear operators, but also as natural extensions of gradients of convex potentials. These vector fields are not always derived from potentials in the classical sense, and as such they are not always amenable to the standard methods of the calculus of variations. We describe here how the selfdual variational calculus, developed recently by the author, provides a variational approach to PDEs and evolution equations driven by maximal monotone operators. To any such vector field T on a reflexive Banach space X, one can associate a convex selfdual Lagrangian L T on the phase space X × X * that can be seen as a “potential” for T, in the sense that the problem of inverting T reduces to minimizing a convex energy functional derived from L T . This variational approach to maximal monotone operators allows their theory to be analyzed with the full range of methods—computational or not—that are available for variational settings. Standard convex analysis (on phase space) can then be used to establish many old and new results concerned with the identification, superposition, and resolution of such vector fields. Dedicated to Felix Browder on his 80th birthday  相似文献   

13.
Optimal control of parabolic variational inequalities is studied in the case where the spatial domain is not necessarily bounded. First, strong and weak solutions concepts for the variational inequality are proposed and existence results are obtained by a monotone and a finite difference technique. An optimal control problem with the control appearing in the coefficient of the leading term is investigated and a first order optimality system in a Lagrangian framework is derived.  相似文献   

14.
15.
The non-linear equations of the dynamics of liquid crystals [1], derived previously by the Poisson brackets method, are derived from the Hamilton-Ostrogradskii variational principle. The variational problem of an unconditional extremum of the action functional in Lagrange variables is investigated. The difference between the volume densities of the kinetic and free energy of the liquid crystal is used as the Lagrangian. It is shown that the variational equations obtained are equivalent to the differential laws of conservation of momentum and the kinetic moment of the liquid crystal in Euler variables, while the Ericksen stress tensor and the molecular field are defined in terms of the derivatives of the free energy.  相似文献   

16.
For the power law Stokes equations driven by nonlinear slip boundary conditions of friction type, we propose three iterative schemes based on augmented Lagrangian approach and interior point method to solve the finite element approximation associated to the continuous problem. We formulate the variational problem which in this case is a variational inequality and construct the weak solution of the continuous problem. Next, we formulate two alternating direction methods based on augmented Lagrangian formalism in order to separate the velocity from the symmetric part the velocity gradient and tangential part of the velocity. Thirdly, we present some salient points of a path‐following variant of the interior point method associated to the finite element approximation of the problem. Some numerical experiments are performed to confirm the validity of the schemes and allow us to compare them.  相似文献   

17.
It has been experimentally observed that piezoceramic materials exhibit different types of nonlinearities under different combinations of electric and mechanical fields. When excited near resonance in the presence of weak e to a Duffinor such as jump phenomena and presence of superharmonics in the response spectra. There has not been much work in the litrature to model these types of nonlinearities. Some authors have developed one-dimensional models for the above phenomenon and derived closed-form solutions for the displacement response of piezo-actuators. However, the generalized three-dimensional (3-D) formulation of electric enthalpy, the variational formulation and the FEM implementation have not yet been addressed, which are the focus of this paper. In this work, these nonlinearities have been modelled in a 3-D piezoelectric continuum using higher order quadratic and cubic terms in the generalized electric enthalpy density function. The coupled nonlinear finite element equations have been derived using variational formulation. A special linearization technique for assembling the nonlinear matrices and solution of the resulting nonlinear equations has been developed. The method has been used for simulating the nonlinear frequency response of a lead zirconate titanate plate excited near its first in-plane vibration resonance frequency with sinusoidal excitations of different electric field strengths. The results have been compared with those of the experiment.  相似文献   

18.
In this paper,the Uzawa iteration algorithm is applied to the Stokes problem with nonlinear slip boundary conditions whose variational formulation is the variational inequality of the second kind.Firstly, the multiplier in a convex set is introduced such that the variational inequality is equivalent to the variational identity.Moreover,the solution of the variational identity satisfies the saddle-point problem of the Lagrangian functional ?.Subsequently,the Uzawa algorithm is proposed to solve the solution of the saddle-point problem. We show the convergence of the algorithm and obtain the convergence rate.Finally,we give the numerical results to verify the feasibility of the Uzawa algorithm.  相似文献   

19.
The numerical analysis of variational integrators relies on variational error analysis, which relates the order of accuracy of a variational integrator with the order of approximation of the exact discrete Lagrangian by a computable discrete Lagrangian. The exact discrete Lagrangian can either be characterized variationally, or in terms of Jacobi’s solution of the Hamilton-Jacobi equation. These two characterizations lead to the Galerkin and shooting constructions for discrete Lagrangians, which depend on a choice of a numerical quadrature formula, together with either a finite-dimensional function space or a one-step method. We prove that the properties of the quadrature formula, finite-dimensional function space, and underlying one-step method determine the order of accuracy and momentum-conservation properties of the associated variational integrators. We also illustrate these systematic methods for constructing variational integrators with numerical examples.  相似文献   

20.
The Lagrangian function in the conventional theory for solving constrained optimization problems is a linear combination of the cost and constraint functions. Typically, the optimality conditions based on linear Lagrangian theory are either necessary or sufficient, but not both unless the underlying cost and constraint functions are also convex.We propose a somewhat different approach for solving a nonconvex inequality constrained optimization problem based on a nonlinear Lagrangian function. This leads to optimality conditions which are both sufficient and necessary, without any convexity assumption. Subsequently, under appropriate assumptions, the optimality conditions derived from the new nonlinear Lagrangian approach are used to obtain an equivalent root-finding problem. By appropriately defining a dual optimization problem and an alternative dual problem, we show that zero duality gap will hold always regardless of convexity, contrary to the case of linear Lagrangian duality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号