首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O).  相似文献   

2.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

3.
4.
We have measured the output parameters of a 10.3-μm pulsed distributed-feedback (DFB) quantum cascade (QC) laser manufactured by Alpes Lasers and intended for high-sensitivity detection of ammonia and ethylene. The laser beam was collimated with an AR-coated aspheric ZnSe lens with focal length of 11.6 mm and clear aperture of 16.5 mm. Near- and far-field distributions of the laser emission were recorded with an infrared imaging camera. The fast-and slow-axis laser beam divergences were measured to be 1.2 and 1.4 mrad (FWHM), respectively. The divergence was found to be increasing with injection current. An air-spaced Fabry–Perot interferometer with free spectral range of 0.05 cm−1 was used to measure the frequency tuning rates of the laser. The laser was tuned by either heat sink temperature, injection current or pulse repetition rate with rates of −8 × 10−2 cm−1 K−1, −7 × 10−2 cm−1 A−1 and −9 × 10−4 cm−1 kHz−1, respectively. The laser frequency decreased linearly with a rate of 10−2 cm−1 ns−1 (300 MHz ns−1) for laser pulses varied from 10 to 50 ns, and the frequency chirp rate was found to decrease for longer laser pulses.  相似文献   

5.
Differential scanning calorimetry and high temperature oxide melt solution calorimetry are used to study enthalpy of phase transition and enthalpies of formation of Cu2P2O7 and Cu3(P2O6OH)2. α-Cu2P2O7 is reversibly transformed to β-Cu2P2O7 at 338–363 K with an enthalpy of phase transition of 0.15 ± 0.03 kJ mol−1. Enthalpies of formation from oxides of α-Cu2P2O7 and Cu3(P2O6OH)2 are −279.0 ± 1.4 kJ mol−1 and −538.8 ± 2.7 kJ mol−1, and their standard enthalpies of formation (enthalpy of formation from elements) are −2096.1 ± 4.3 kJ mol−1 and −4302.7 ± 6.7 kJ mol−1, respectively. The presence of hydrogen in diphosphate groups changes the geometry of Cu(II) and decreases acid–base interaction between oxide components in Cu3(P2O6OH)2, thus decreasing its thermodynamic stability.  相似文献   

6.
A new tetradentate N2O2 donor Schiff base ligand [OHC6H4CHNCH2CH2CH(CH2CH3)NCHC6H4OH = H2L ] was obtained by 1:2 condensation of 1,3-diaminopentane with salicylaldehyde and has been used to synthesise an unusual copper(II) complex whose asymmetric unit presents two structurally different almost linear trinuclear units [Cu3(μ-L)2(ClO4)2] [Cu3(μ-L)2(H2O)(ClO4)2] (1). The ligand and the complex were characterised by elemental analysis, FT-IR, 1H NMR and UV–Vis spectroscopy in addition electrochemical and single crystal X-ray diffraction studies were performed for the complex. The magnetic properties of 1 reveal the presence of strong intra-trimer (J1 = −202(3) cm−1 and J2 = −233(3) cm−1) as well as very weak inter-trimer (zJ′ = −0.11(1) cm−1) antiferromagnetic interactions.  相似文献   

7.
Cathodic electrophoretic deposition (EPD) method has been developed for the deposition of manganese dioxide films. It was shown that phosphate ester (PE) is an effective charging additive, which provides stabilization of manganese dioxide nanoparticles in suspensions. The influence of PE concentration and deposition voltage on the deposition efficiency has been studied. EPD has been utilized for the fabrication of porous nanostructured films with thickness in the range of 0.5–20 μm for application in electrochemical supercapacitors (ES). Cyclic voltammetry and chronopotentiometry data for the films tested in the 0.1 M Na2SO4 solutions showed capacitive behavior in the voltage window of 1 V. The highest specific capacitance (SC) of 377 F g−1 was obtained at a scan rate of 2 mV s−1. The SC decreased with increasing film thickness and increasing scan rate in the range of 2–100 mV s−1. The deposition mechanism, kinetics of deposition and charge storage properties of the films are discussed.  相似文献   

8.
Indium tin oxide (ITO) nanopowder was added to a polymer film containing WO3 · H2O particles to enhance electron conductivity and complimentary Li ion kinetics in an electrochromic device. Film conductivity increased dramatically with ITO content, suggesting the formation of conductive ITO networks in the film. The improved electron conductivity leads to a substantial increase of the effective Li+ ion diffusion coefficient in the composite film, from 10−11 to 10−9 cm2/s. Electrochromic contrast studies revealed that the presence of the ITO networks leads to enhanced blue/green color contrast.  相似文献   

9.
Rotational vibrational fine structure and transition dipole moment of NO2 is measured using Doppler free saturation spectroscopy with an external grating cavity quantum cascade laser (QCL). The QCL wavelength is calibrated using a 310 cm long internally coupled Fabry–Perot interferometer. We obtain a frequency splitting of 139.68 ± 0.06 MHz (0.0047 cm−1) between the spin doublets (17) of 000 → 001 transition of NO2. The resolution of the QCL based saturation spectrometer is limited by the QCL linewidth of 3.99 MHz ( 0.00013 cm−1) deduced from the half width of the Lamb dips. The Lamb dip spectroscopy is utilized to obtain a vibrational dipole moment of 0.37 Debye for the (17) transitions.  相似文献   

10.
We report on the utilization of gold nanorods to create a highly responsive glucose biosensor. The feasibility of an amperometric glucose biosensor based on immobilization of glucose oxidase (GOx) in gold nanorod is investigated. GOx is simply mixed with gold nanorods and cross-linked with a cellulose acetate (CA) medium by glutaraldehyde. The adsorption of GOx on the gold nanorods is confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Circular dichroism (CD) and UV-spectrum results show that the activity of GOx was preserved after conjugating with gold nanorods. The current response of modified electrode is 10 times higher than that of without gold nanorods. Under optimal conditions, the biosensor shows high sensitivity (8.4 μA cm−2 mM−1), low detection limit (2 × 10−5 M), good storage stability and high affinity to glucose (). A linear calibration plot is obtained in the wide concentration range from 3 × 10−5 to 2.2 × 10−3 M.  相似文献   

11.
An interaction between humic acid, an organic part of soil and mercury was studied by Fourier transform infrared spectroscopy (FTIR) and by ICP-AES analysis under given pH and concentration conditions. First the spectroscopic model was validated on the interaction of simple molecules representing the structural components of humic acid such as benzoic acid, catechol and salicylic acid with mercury. The interaction of carboxylic parts of humic acid with mercury is very interesting and easily characterised by infrared spectroscopy, an ideal mean for molecular study. Under the salt form (commercial humic acid Fluka TM: FHA), humic acid reacts with mercury in a different way from its acid form (FHA purified noted PFHA) and the Leonardite (LHA). Because of the straightforward exchange between Na+, Ca2+ and Hg2+, fixation of the latter is much more important with the salt form (FHA). However, this reaction is reduced under the acid form (PFHA, LHA) because the exchange with protons is difficult. The effect of this exchange was studied by FTIR showing the intensity decrease of νCO (COOH), the carboxylic functional group band of the acid, and the shifting of νas (COO), the carboxylate functional group band under given pH and mercury conditions. For the FHA salt form, the characteristic band νCO (COOH) represented by a shoulder did not evolute, whereas the corresponding band to νas (COO) strongly shifted (40 cm−1) for a maximum Hg2+ concentration (1 g l−1). On the other hand, for the acid form (PFHA, LHA), the intense band of νCO (COOH) disappeared proportionally to the increase of Hg2+concentration and the νas (COO) band moved for about 20 cm−1. The same results were reached with pH variations. Our results were confirmed by ICP-AES mercury analysis. This study shows that humic acids react differently according to their chemical and structural state.  相似文献   

12.
In the present paper we describe a robust and simple method to measure dissolved iron (DFe) concentrations in seawater down to <0.1 nmol L−1 level, by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using a 54Fe spike and measuring the 57Fe/54Fe ratio. The method provides for a pre-concentration step (100:1) by micro-columns filled with the resin NTA Superflow of 50 mL seawater samples acidified to pH 1.9. NTA Superflow is demonstrated to quantitatively extract Fe from acidified seawater samples at this pH. Blanks are kept low (grand mean 0.045 ± 0.020 nmol L−1, n = 21, 3× S.D. limit of detection per session 0.020–0.069 nmol L−1 range), as no buffer is required to adjust the sample pH for optimal extraction, and no other reagents are needed than ultrapure nitric acid, 12 mM H2O2, and acidified (pH 1.9) ultra-high purity (UHP) water. We measured SAFe (sampling and analysis of Fe) reference seawater samples Surface-1 (0.097 ± 0.043 nmol L−1) and Deep-2 (0.91 ± 0.17 nmol L−1) and obtained results that were in excellent agreement with their DFe consensus values: 0.118 ± 0.028 nmol L−1 (n = 7) for Surface-1 and 0.932 ± 0.059 nmol L−1 (n = 9) for Deep-2. We also present a vertical DFe profile from the western Weddell Sea collected during the Ice Station Polarstern (ISPOL) ice drift experiment (ANT XXII-2, RV Polarstern) in November 2004–January 2005. The profile shows near-surface DFe concentrations of 0.6 nmol L−1 and bottom water enrichment up to 23 nmol L−1 DFe.  相似文献   

13.
A planar-type amperometric dual microsensor was developed for the simultaneous measurement of the nitric oxide (NO) and oxygen (O2) concentrations. The sensor (overall diameter = 500 μm) consisted of a dual working electrode (WE) containing two platinized platinum microdisks (25 μm diameter, WE1, WE2, distance between two disks > 330 μm) and a Ag/AgCl wire reference electrode covered with an expanded poly(tetrafluoroethylene) gas-permeable membrane. The differentiation and concurrent measurements of NO and O2 were obtained successfully using two sensing WEs with different applied potentials (+0.75 V for WE1 and −0.4 V for WE2). Cross-talk between WE1 and WE2 was eliminated with an optimized internal solution composition. Linear dynamic range, selectivity, sensitivity, detection limit (<5 nM for NO; <500 nM for O2), and stability (>50 h) were evaluated.  相似文献   

14.
Solvent effect on the νc frequency of CH stretching vibration of the blue shifted F3CH…FCD3 complex has been studied in liquefied N2, CO, Ar, Kr and Xe. In the case of Xe, the spectroscopic measurements have also been extended to the solid state. It was found that the νc position of the complex in the solutions studied lowers with respect to the value in the gas phase. In liquid Xe, characterized by the largest permittivity, this effect reaches its maximum value of −14.5 cm−1. The νc frequency begins to grow again just below the freezing point of Xe, where a noticeable (15%) increase of the density of Xe occurs. The experimental results obtained for the liquid phase have been analyzed in the framework of the Onsager-like reaction field model and Polarizable Continuum Model (PCM) implemented into a standard Gaussian 98 Program.  相似文献   

15.
A new ion chromatography method is described for the simultaneous determination of Cl, NO3 and SO42−, using a selected eluent 1.3-mM sodium gluconate/1.3-mM borax (pH 8.5). The extraction methods of Cl, NO3, SO42− in vegetables are studied. The determination limits of Cl, NO3, SO42− are 0.17 μg/ml, 0.63 μg/ml and 0.81 μg/ml. The linear ranges are 060 μg/ml, 090 μg/ml and 090 μg/ml. The relative S.D. are <2.5%. The mean recoveries of Cl, NO3, SO42− in vegetables range from 97.0 to 104%.  相似文献   

16.
Fumed oxide alumina/silica/titania was studied in comparison with fumed alumina, silica, titania, alumina/silica, and titania/silica by means of XRD, 1H NMR, IR, optical, dielectric relaxation, and photon correlation spectroscopies, electrophoresis, and quantum chemical methods. The explored Al2O3/SiO2/TiO2 consists of amorphous alumina (22 wt%), amorphous silica (28 wt%), and crystalline titania (50 wt%, with a blend of anatase (88%) and rutile (12%)) and has a wide assortment of Brønsted and Lewis acid sites, which provide a greater acidity than that of individual fumed alumina, silica, or titania and an acidity close to that of fumed alumina/silica or titania/silica. The changes in the Gibbs free energy (ΔG) of interfacial water in an aqueous suspension of Al2O3/SiO2/TiO2 are close to the ΔG values of the dispersions of pure rutile but markedly lower than those of alumina, anatase, or rutile covered by alumina and silica. The zeta potential of Al2O3/SiO2/TiO2 (pH of the isoelectric point (IEP) equals ≈3.3) is akin to that of fumed titania (pH(IEPTiO2) ≈ 6) at pH > 6, but it significantly differs from the ζ of fumed alumina (pH(IEPAl2O3) ≈ 9.8) at any pH value as well as those of fumed silica, titania/silica, and alumina/silica at pH < 6. The particle size distribution in the diluted aqueous suspensions of Al2O3/SiO2/TiO2 studied by means of photon correlation spectroscopy depends relatively slightly on pH in contrast to the titania/silica or alumina/silica dispersions. Theoretical calculations of oxide cluster interaction with water show a high probability of hydrolysis of Al–O–Ti and Si–O–Ti bonds strained at the interface of alumina/titania or silica/titania due to structural differences in the lattices of the corresponding individual oxides. Ab initio calculated chemical shift δH values of H atoms in different hydroxyl groups at the oxide clusters and in bound water molecules are in agreement with the 1H NMR data and show a significant impact of charged particles (H3O+ or OH) on the average δH values of water droplets with (H2O)n at n between 2 and 48.  相似文献   

17.
Microphase separation within hydrated Nafion® membranes was simulated using Dissipative Particle Dynamics (DPD). Morphologies were obtained at branching densities corresponding with equivalent weights ranging from 800 to 1400 (g/mole SO3) and water percentage volume contents ([H2O]) varying between 10% and 30%. All cases showed pronounced microphase separation involving a hydrophobic Teflon phase and a hydrophilic phase in which water is associated with SO3 groups that are located near the phase boundaries. Pore morphologies were found to depend strongly on water content and branching density. The average pore radius (Rpore) and the distance between the pores (Dcl-cl) were found to increase with water content obeying the relations Rpore = 1.3 + α[H2O] (nm), and Dcl-cl = 3.2 + β[H2O] (nm). The values of the expansion coefficients α and β decrease linearly with branching density with α = 5.3 × 10−5 × (EW-450) and β = 1.3 × 10−4 × (EW-450) nm/vol%. For decreasing branching density the pores obtain a more spherical character. The consequence of this on water diffusion is estimated by employing Monte Carlo trajectory calculations in which we assume that water movement is confined within the hydrophilic phase and local water mobility to be equal to that of pure water. The estimated diffusion constants increase linearly with branching density (i.e. linear decrease with equivalent weight). Experimental water diffusion constants obtained from literature for Nafion1100 membrane are in good agreement with our calculations. A counterintuitive picture evolves in which smaller pores lead to enhanced water diffusion.  相似文献   

18.
X-ray diffraction study of supercooled water has been performed using an imaging-plate X-ray detector down to −15 °C. The peak at 10.8 Å, which grows with decreasing temperature, in the radial distribution function {D(r) − 4πr2ρ0} indicates the existence of clathrate-like structures in supercooled water. It is suggested that anomalous properties of water, which become more pronounced at low temperatures, are closely linked to the development of clathrate-like structures in water at low temperatures.  相似文献   

19.
A vibrational–rotational spectrum of the ν = 2 transitions of a high-temperature molecule AlF was observed between 1490 and 1586 cm−1 with a diode laser spectrometer. Measurements were made on the ν = 3–1, 4–2, 5–3 and 8–6 bands at a temperature of 900 °C. Measured spectral lines were fitted to effective band constants ν0, Bν and Dν for each band. Present measurements were made with only one Pb-salt laser diode. Physical significance of the effective band constants is discussed.  相似文献   

20.
Li[Li0.23Co0.3Mn0.47]O2 cathode material was prepared by a sol–gel method. The material had a primary particle size of about 100 nm, covered by a 30 Å of Li2CO3 layer. The material showed promising electrochemical performance when cycled up to 3C rate. The electrochemical kinetics of the first charge was much slower than that of the second charge, due to the complex electrochemical process which involved not only Li+ diffusion but also release of oxygen. By taking account of this, the material was pre-charged very slowly (C/50) in the first cycle. This led to excellent electrochemical performance in the following cycles. For instance, the 1C-rate capacity increased to 168 mA h g−1 after 50 cycles, comparing with the 145 mA h g−1 obtained without pre-charging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号