首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29−xVxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants , and c and the unit cell volume of R3Fe29−xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y=6.5 and 6.9 in these hydrides.  相似文献   

2.
Using density-functional calculations, we investigate the special properties of SrFe1−xCoxO3. The results show that the ground states have A-type antiferromagnetic order for x=0.1 and ferromagnetic order for x≥0.2 with Co ions distributed averagely. SrFe1−xCoxO3 exhibits half-metallic nature for 0.2≤x≤0.7 and full-metallic nature for other values of x, and the half-metallic gap decreases with increasing x. The tunneling between the half-metallic ferromagnetic phases drives the large magnetoresistance. In addition, the Co cations are in the intermediate-spin state, while the Fe cations are in the intermediate-spin state for x≤0.5 and the high-spin state for x≥0.6.  相似文献   

3.
Structure, Curie temperature and magnetostriction of RFex (1.6 ? x ? 2.0) and R(Fe1−yTiy)1.8 (y ? 0.2) alloys (RDy0.65Tb0.25Pr0.1) have been investigated using optical microscopy, X-ray diffraction, AC initial susceptibility and standard strain gauge techniques. The homogenized RFex alloys are found to be essentially single phase in the range of 1.8 ? x ? 1.85. The second phase is a rare-earth-rich phase when x ? 1.8, and (Dy, Tb, Pr)Fe3 phase when x ? 1.85. X-ray diffraction indicates that the R(Fe1−yTiy)1.8 alloys contain a small amount of Fe2Ti phase when y ? 0.05, which increases with the increment of Ti content. The Curie temperature of R(Fe1yTiy)1.8 alloys slightly enhances with increasing Ti concentration when y ? 0.05, then remains almost unchanged in the range of 0.05 ? y ? 0.20. The magnetostriction of RFex alloys is improved when x ? 1.80 and reduced by increasing Fe content when x ? 1.85. The magnetostriction of R(Fe1−yTiy)1.8 alloys is lowered by increasing Ti content.  相似文献   

4.
For the first time, barium ferrite films with in-plane orientation were prepared at 700°C by pulsed laser deposition technique (PLD) on Si(1 1 1) without any post-annealing. An amorphous Ba–Fe–O film is used as underlayer to facilitate the crystallization and improve the orientation of films. Sharp (1 1 0) and (2 2 0) peaks appeared in the XRD pattern. The surface morphologies observed by SEM are similar to the typical computer generated grain arrangements obtained by Suzuki et al. in their micromagnetics study. Furthermore, a particular kind of structure of film cross-section was identified in PLD for barium ferrite films. The grain size is about 3 μm, and the coercivity is around 1500 Oe.  相似文献   

5.
Co(0 0 0 1)hcp/Fe(1 1 0)bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO3(1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0)bcc soft magnetic layer grew epitaxially on SrTiO3(1 1 1) substrate with two type variants, Nishiyama–Wasserman and Kurdjumov–Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1)hcp interlayer, while hcp-Co layer formed on Au(1 1 1)fcc or Ag(1 1 1)fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application.  相似文献   

6.
A series of Ag1−x(Ni0.8Co0.2)x granular film samples were prepared using an ion-beam cosputtering technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were performed to investigate the microstructure of these samples. The results measured using a vibrating sample magnetometer (VSM) show a gradual change from superparamagnetism to ferromagnetism as x increases in these samples. Magnetoresistance was measured using a conventional four terminal method at room temperature. As x increases, a transition from giant magnetoresistance (GMR) to anisotropic magnetoresistance (AMR) has been observed. The stripe-type domains have been observed using magnetic force microscopy (MFM) in the high x samples, and the domains gradually disappear as x decreases. It suggests that the transition from GMR to AMR may result from intergranular interaction (not only dipolar) in the samples as x increases.  相似文献   

7.
Our investigation on the relation between oxygen content and the laser-induced voltages of the YBa2Cu3O7−δ films in normal-state shows that deoxygenation of the superconducting films reduces the laser-induced voltages greatly, even reverses the sign of the signals at large oxygen deficiency. The absolute value of the negative signal at large oxygen deficiency can be greater than that of the positive signal.  相似文献   

8.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

9.
FexPt100−x(30 nm) and [FexPt100−x(3 nm)/ZrO2]10 (x = 37, 48, 57, 63, 69) films with different ZrO2 content were prepared by RF magnetron sputtering technique, then were annealed at 550 °C for 30 min. This work investigates the effect of ZrO2 doping on the microstructural evolution, magnetic properties, grain size, as well as the ordering kinetics of FePt alloy films. The as-deposited films behaved a disordered state, and the ordered L10 structure was obtained by post-annealing. The magnetic properties of the films are changed from soft magnetism to hard magnetism after annealing. The variation of the largest coercivities of [FexPt100−x/ZrO2]10 films with the Fe atomic percentage, x and differing amounts of ZrO2 content reveals that as we increase the ZrO2 content we must correspondingly increase the amount of Fe. This phenomenon suggests that the Zr or O atoms of ZrO2 preferentially react with the Fe atoms of FePt alloy to form compounds. In addition, introducing the nonmagnetic ZrO2 can reduce the intergrain exchange interactions of the FePt/ZrO2 films, and the interactions are decreased as the ZrO2 content increases, the dipole interactions are observed in FePt/ZrO2 films as the ZrO2 content is more than 15%.  相似文献   

10.
Synthesis of apatites, Na1−xKxPb4(PO4)3 0≤x≤1, with anion vacancy was carried out using solid state reactions. The solid solution of apatite-type structure crystallizes in the hexagonal system, space group P63/m (No 176). Rietveld refinements showed that 75% of Pb2+ cations are located in the (6h) sites; the ninefold coordination sites (4f) are equally occupied by the other 25% lead cations and the K+ and Na+ monovalent ions.The structure can be described as built up from [PO4]3− tetrahedra and Pb2+ of sixfold coordination cavities (6h positions), which delimit void hexagonal tunnels running along [0 0 1]. These tunnels are connected by cations of mixed sites (4f) half occupied by Pb2+ and half by Na+/K+ mixed cations. The assignment of the observed frequencies in the Raman and infrared spectra is discussed on the basis of a unit cell group analysis and by comparison with other apatites. The Raman modes of all the compositions show some linear shifts of the frequencies as a function of the composition toward lower values due the substitutions of Na+ by K+ with a larger radius.  相似文献   

11.
We report on the magnetic properties of single crystalline thin films of Zn1−xCoxO (x=0.003–0.14) grown by plasma-assisted molecular beam epitaxy. In order to understand the role of intermediate charge carriers in the magnetic properties of this material two types of films were fabricated, with and without Ga-codoping. Magnetic measurements were made between 2 and 300 K in fields up to 5 T with a Quantum Design SQUID magnetometer. We found that all the tested films exhibit paramagnetic behavior following the Curie–Weiss law, χ=C/(Tθ), with negative Curie–Weiss temperatures and that this behavior holds even under strong n-doping. We show that the magnetization data, M(H), in function of the Co content provide additional evidence in favor of the antiferromagnetic Co–Co interaction in this material. We also observe that these data exhibit an ‘easy plane’ magnetic anisotropy for all the studied Co concentrations. Finally, we develop a simple cluster model, in order to describe the magnetic properties of ZnCoO, which is found to be in good agreement with our experiments.  相似文献   

12.
CoC composite films and Co/C multilayer films have been prepared by a method incorporating ion beam sputtering and plasma chemical vapor deposition. It has been found that the structure and magnetic properties of both the Co-C composite and the Co/C multilayer films depend strongly on the substrate temperature during deposition. The Co-C composite film deposited at room temperature is amorphous, with relatively low saturation magnetization and coercivity. On the other hand, the film deposited at 250 °C is composed of fine Co crystallites separated by amorphous C or Co-C phase. As a result, both the saturation magnetization and coercivity are increased compared with the film deposited at room temperature. When deposited at room temperature, the Co/C multilayer film exhibits good periodicity, with a period of 70 nm (Co: 40 nm, C: 30 nm) and sharp and flat Co-C interfaces. High magnetization (602 emu/cm3) and low coercivity (1.6 Oe) are obtained for such a film. However, increasing the substrate temperature to 250 °C was found to be detrimental to the magnetic properties due to the formation of cobalt carbide at the Co-C interface. Received: 11 July 2000 / Accepted: 13 July 2000 / Published online: 30 November 2000  相似文献   

13.
(Ga1−xMnx)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga1−xMnx)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga1−xMnx)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga1−xMnx)N thin films appeared. These results indicate that the (Ga1−xMnx)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.  相似文献   

14.
We report on the ferromagnetic characteristics of Zn1−xMnxO films (x=0.1-0.3) prepared by the sol-gel method on silicon substrates using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Magnetic measurement show that the Curie temperature (TC) and the coercive field (HC) were ∼39 K and ∼2100 Oe for the film of x=0.2, respectively. EDS and TEM measurements indicate that Mn content at the interface is significantly higher than that at the center of the Zn0.8Mn0.2O film showing the ratio, Zn:Mn:O≅1:12:15. This experimental evidence suggests that ferromagnetic precipitates containing manganese oxide may be responsible for the observed ferromagnetic behavior of the film.  相似文献   

15.
We report experimental data on the temperature and concentration dependences of the Nernst coefficient in the normal state for the YBa2Cu3 − xCoxOyceramic samples with increasing Co content up tox = 0.3. The Nernst coefficient is positive, and its value increases almost linearly withx. The temperature dependences ofQhave been analyzed on the basis of a narrow band model, together with data on other transport coefficients. Using a complex quantitative analysis of four transport coefficients, we were able to estimate the carrier mobility and to elucidate a character of the energy dependence of the relaxation time.  相似文献   

16.
FePt:Ag nanocomposite films were prepared by pulsed filtered vacuum arc deposition system and subsequent rapid thermal annealing on SiO2/Si(1 0 0) substrates. The microstructure and magnetic properties were investigated. A strong dependence of coercivity and ordering of the face-central tetragonal structure on both Ag concentration and annealing temperature was observed. With Ag concentration of 22% in atomic ratio, the coercivity got to 6.0 kOe with a grain size of 6.7 nm when annealing temperature was 400 °C.  相似文献   

17.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

18.
Ferromagnetic Ga1−xMnxAs layers (where x≈4.7–5.5%) were grown on (1 0 0) GaAs substrates by molecular beam epitaxy. These p-type (Ga,Mn)As films were revealed to have a ferromagnetic structure and ferromagnetism is observed up to a Curie temperature of 318 K, which is ascribed to the presence of MnAs secondary magnetic phases within the film. It is highly likely that the phase segregation occurs due to the high Mn cell temperature around 890–920 °C, as it is well established that GaMnAs is unstable at such a high temperature. The MnAs precipitate in the samples with x≈4.7–5.5% has a Curie temperature Tc≈318 K, which was characterized from field-cooled and zero-field-cooled magnetization curves.  相似文献   

19.
In this paper, we report on pulsed laser deposition of n-type Cu-doped ZnO thin films on c-plane sapphire substrates at 700°C. XRD and HRTEM were employed to study the epitaxial growth relationship between the Zn1−x Cu x O film and sapphire substrate. Absorption measurements showed excitonic nature of the thin films and a decrease in the bandgap energy with increased Cu concentration was observed. Such as-deposited films showed room temperature ferromagnetism with Curie temperature (T c ) at around 320 K. The moment per Cu atom decreases as the Cu concentration increases. The largest magnetic moment about 0.81μ B /Cu atom was observed for Zn0.95Cu0.05O thin films. The presence of any magnetic second phase was ruled out and the ferromagnetism was attributed to Cu ions substituted directly into the ZnO lattice.  相似文献   

20.
Nanocrystalline spinel ferrite thin films of CoxFe3−xO4 (x=0.3x=0.3, 0.5, 0.8, and 1.0) have been prepared by RF sputtering on quartz substrate without a buffer layer at room temperature and annealed at the temperature range from 200 to 600 °C in air. The as-sputtered films exhibit the preferred orientation and the high magnetization and coercivity. After annealing, the preferred orientations become poor, but the magnetization and coercivity increase. The sample with a magnetization of 455 emu/cm3, a coercivity of 2.8 kOe, a remanence ratio of 0.72, and a maximum energy product of 2.4 MGOe has been obtained. The influence of Co ions and annealing temperature on the magnetic properties has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号