首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a novel quantum device in which a double carbon nanotube is embedded inside a suspended semiconductor slab. We theoretically investigate, in terms of a perturbation treatment based on a unitary transformation, the dynamics of the charge qubit in relation to the device. The phonon-induced decoherence and the quality of the qubit are analyzed in detail after a derivation of the phonon spectral density. It is shown that a charge qubit of high quality can be obtained due to the inhibition of the electron–phonon coupling in the confined structure of the slab, suggesting that the novel quantum device is a good candidate for quantum information processing.  相似文献   

2.
We investigate theoretically the dynamics of a charge qubit (double quantum dot system) coupled electrostatically with the double-dot detector. The qubit charge oscillations and the detector current are calculated using the equation of motion method for appropriate correlation functions. In order to find the best detector performance (i.e. the detector current signal follows as well as possible the qubit charge oscillations) we consider different qubit-detector geometries. The optimal setup was found for the qubit lying parallel to the detector quantum dots for which we observed very good detector performance together with weak decoherence of the system. It is also shown that the asymptotic detector current (flowing in response to the limited in time qubit-detector interaction) fully reproduces the qubit dynamics.  相似文献   

3.
Quantum operations with a charge solid-state qubit whose logical states are formed by two spatially separated localized states of an electron in the double-dot structure are studied theoretically. We show that it is possible to perform various one-qubit rotations making use of the microwave pulses tuned to the resonances between the localized states and the excited state delocalized over the nanostructure. An explicit analytic expression for the time-dependent electron state vector is derived, and the appropriate pulse parameters are determined.  相似文献   

4.
An electron-phonon cavity consisting of a quantum dot embedded in a freestanding GaAs/AlGaAs membrane is characterized using Coulomb blockade measurements at low temperatures. We find a complete suppression of single electron tunneling around zero bias leading to the formation of an energy gap in the transport spectrum. The observed effect is induced by the excitation of a localized phonon mode confined in the cavity. This phonon blockade of transport is lifted at discrete magnetic fields where higher electronic states with nonzero angular momentum are brought into resonance with the phonon energy.  相似文献   

5.
We present the measurement of a hybrid double-dot qubit using a quantum point contact (QPC). To study the dy- namics, we derive the rate equations of the entire system. Numerical results show that QPC current can directly reflect the evolution of the qubit. By adjusting Coulomb interaction, energy mismatch, and QPC tunneling rate, the efficiency and dephasing time can be improved. In addition, the initial state with a hybrid triplet state is superior to that with the purely triplet states on the efficiency. Moreover, the decoherence time is estimated on the magnitude of a microsecond, long enough to implement quantum operations.  相似文献   

6.
We investigate charge qubit measurements using a single electron transistor, with focus on the backaction-induced renormalization of qubit parameters. It is revealed the renormalized dynamics leads to a number of intriguing features in the detector's noise spectra, and therefore needs to be accounted for to properly understand the measurement result. Noticeably, the level renormalization gives rise to a strongly enhanced signal-to-noise ratio, which can even exceed the universal upper bound imposed quantum mechanically on linear-response detectors.  相似文献   

7.
量子环中量子比特的声子效应   总被引:3,自引:0,他引:3       下载免费PDF全文
姜福仕  赵翠兰 《物理学报》2009,58(10):6786-6790
在量子环中电子与体纵光学声子强耦合的情况下,通过求解能量本征方程,得出了电子的基态和第一激发态的本征能量及其波函数,进而以电子-声子系的基态与第一激发态构造了一个量子比特.数值计算结果表明量子比特内电子的空间概率密度分布随时间和空间角坐标作周期性振荡,且振荡周期随耦合强度的增大而减小,说明声子将导致量子比特相干性降低;还表明振荡周期随量子环内径(或外径)的增大而增大,因此适当改变量子环的尺度,可以提高量子比特的相干性. 关键词: 量子环 量子信息 量子比特  相似文献   

8.
By virtue of the canonical quantization method, we present a quantization scheme for a charge qubit based on the superconducting quantum interference device (SQUID), taking the self-inductance of the loop into account. Under reasonable short-time approximation, we study the effect of decoherence in the ohmic case by employing the response function and the norm. It is confirmed that the decoherence time, which depends on the parameters of the circuit components, the coupling strength, and the temperature, can be as low as several picoseconds, so there is enough time to record the information.  相似文献   

9.
We report on the observation of new features in a superconducting charge qubit system. The system we analyze comprises of a single Cooper-pair box sequentially coupled to two microwave cavity fields. Simulations of the full qubit–field dynamics show significant total correlation and coherence loss. By suitably choosing the system’s parameters and precisely controlling the dynamics, we demonstrate the generation of two-mode field states. We explore the nonclassical behavior of the system by studding the quasi-probability distribution function. Our scheme can be realized within the current experimental technology and may well be of use in quantum information processing applications.  相似文献   

10.
We investigate, from a theoretical perspective, the coupled electronic and ionic/atomic dynamics of Na clusters embedded in Ar matrices. The system is described by time-dependent density-functional theory for cluster electrons and classical motion for Na+ ions as well as for Ar atoms. The interaction with the surrounding Ar atoms is modelled by polarization potentials plus core repulsion. We use this model to study coupled electronic and ionic/atomic motion in embedded clusters following a very short laser pulse. For excitations in the non-linear regime, we find clear signs for the coherent coupling of the Mie plasmon resonance with ionic vibrations (phonons). In addition, an incoherent line stretching is observed which can be traced back to the turning point of ionic vibrations. The coupling to the atomic motion of the surroundings leads to a slow and far reaching rearrangement of the matrix. PACS 36.40.Gk; 36.40.Vz; 31.15.EW  相似文献   

11.
We investigate the spin and charge Nernst effect of a four-terminal Aharonov–Bohm interferometer with Rashba spin–orbit interaction (RSOI). It is shown that a pure spin Nernst effect or a fully spin-polarized Nernst effect can be obtained by modulating the magnetic flux phase ? and the RSOI induced phase φ. It is also demonstrated that some windows of ? (or φ) for maintaining an almost fully spin-polarized Nernst effect exist and their width is under the control of the other phase. Moreover, for the charge Nernst coefficient Nc and spin Nernst coefficient Ns the relationship Nc(?,φ)=?Ns(φ,?) always holds. These results suggest that our proposal may act as a controllable thermospin generator.  相似文献   

12.
A measure of nonclassicality of quantum states based on the negative values of the Wigner function (WF) of a charge qubit-field system is proposed. It is found that, the negative values of the field WF are very sensitive to any change in dissipation parameter. The dissipation leads to a long-time death for both entanglement and nonclassicality, and also the coherence of the cavity state is lost completely.  相似文献   

13.
We study quantum coherence in a semiconductor charge qubit formed from a GaAs double quantum dot containing a single electron. Voltage pulses are applied to depletion gates to drive qubit rotations and noninvasive state readout is achieved using a quantum point contact charge detector. We measure a maximum coherence time of ~7 ns at the charge degeneracy point, where the qubit level splitting is first-order insensitive to gate voltage fluctuations. We compare measurements of the coherence time as a function of detuning with numerical simulations and predictions from a 1/f noise model.  相似文献   

14.
赵翠兰  丛银川 《物理学报》2012,61(18):186301-186301
采用求解能量本征方程、LLP幺正变换、变分相结合的方法研究 球壳量子点中极化子和量子比特的声子效应. 数值计算表明: 声子效应使极化子的基态(或激发态)能量小于电子的基态(或激发态)能量, 使量子比特的振荡周期减小, 且内径给定时, 随着外径的增大声子效应对极化子和量子比特振荡周期的影响越大; 声子效应不改变量子比特内电子概率密度分布的幅值, 量子比特内中心球面处概率密度幅值最大, 界面处概率密度为零, 其它处的概率密度幅值介于最大和最小之间, 且各个空间点的概率密度随半径和方位角的变化而变化, 随时间做周期性振荡.  相似文献   

15.
In this paper, we study the influence of LO phonon (LOP) on the charge qubit in a quantum dot (QD), and find that the eigenenergies of the ground and first excited states are reduced due to the electron-LOP interaction. At the same time, the time evolution of the electron probability density is obtained, the dependence of the oscillating period on electron-LOP coupling constant is found, the relation of between the oscillating period and the confinement length of the QD is calculated. Finally, we consider the effects of the electron-LOP coupling constant on pure dephasing factor under considering the correction of electron-LOP interaction for the wave functions. Our results suggest that electron-LOP interaction has very important effects on charge qubit.  相似文献   

16.
We study numerically the effects of spontaneous emission from the upper state in a single two-level atom (qubit) driven by a field of constant amplitude and frequency varying linearly in time, crossing the atomic resonance, the Landau-Zener model, using a discontinuous jump quantum trajectory formalism. A single trajectory describes the pure state atomic evolution during the sweep of the field frequency across the atomic transition. Each jump returns the atom to its ground state, but the behavior of reexcitation depends on the time the jump occurred: before, near, or after the resonance, as a result of the nonstationary nature of the Landau-Zener model. The evolution of the Bloch vector during a single trajectory is unitary (a pure state preserves the trace), but shows the stochastic nature of the particular qubit history. The ensemble average, which agrees with the Bloch equations, shows that spontaneous emission causes both the shrinking of the Bloch vector shortly after crossing the resonance and its recovery for longer times. The quantum jump approach allows a simple calculation of the distribution of emissions per sweep. Its mean agrees with the integrated emission rate, the variance increases with the field strength and decay rate, and the zero-jump value of the distribution gives the fraction of trajectories without a jump.  相似文献   

17.
In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of remarkable new features are found. The work would, in particular, highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.  相似文献   

18.
Polarized fluorescence decay in NADH molecules in aqueous solution under two-photon excitation by femtosecond laser pulses has been studied. The excitation was carried out by linear and circularly polarized radiation at four wavelengths: 720, 730, 740, and 750 nm. Time-dependent polarized fluorescence signals were recorded as a function of the excitation light polarization and used for determination of a set of molecular parameters, two lifetimes characterizing the molecular excited states, and the rotation correlation time τrot. The results obtained can be used to create and prove theoretical models describing the intensity and polarization of fluorescence in NADH involved in the regulation of the redox reactions in cells and tissues of living organisms.  相似文献   

19.
We propose a strategy to demonstrate the transition from the quantum Zeno effect (QZE) to the anti-Zeno effect (AZE) using a superconducting qubit coupled to a transmission line cavity, by varying the central frequency of the cavity mode. Our results are obtained without the rotating wave approximation (RWA), and the initial state (a dressed state) is easy to prepare. Moreover, we find that in the presence of both qubit?s intrinsic bath and the cavity bath, the emergence of the QZE and the AZE behaviors relies not only on the match between the qubit energy-level-spacing and the central frequency of the cavity mode, but also on the coupling strength between the qubit and the cavity mode.  相似文献   

20.
A new regime of coherent quantum dynamics of a qubit is realized at low driving frequencies in the strong driving limit. Coherent transitions between qubit states occur via the Landau-Zener process when the system is swept through an energy-level avoided crossing. The quantum interference mediated by repeated transitions gives rise to an oscillatory dependence of the qubit population on the driving-field amplitude and flux detuning. These interference fringes, which at high frequencies consist of individual multiphoton resonances, persist even for driving frequencies smaller than the decoherence rate, where individual resonances are no longer distinguishable. A theoretical model that incorporates dephasing agrees well with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号