首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present a density functional theory study on the exohedral interaction between a singly positively charged lithium atom and fullerenes: Li+?C n n = 70, 60 and 50. We have found that the interaction is of electrostatic nature: the cation polarizes the π electronic cloud of the fullerene in an ion-induced dipole attraction. We show that these systems present a shallow potential energy surface where the local minima correspond to the interaction of the cation on top of one pentagonal or one hexagonal face of the fullerene and transition states connect them through a movement of the cation over a C?C bond. The type of interaction and the shape of the potential energy surface give rise to the so-called planetary systems, where the alkali cation is revolving around the carbon cage in orbits. The studied systems present several pathways that are more likely than others to behave as potentially favorable orbits.  相似文献   

3.
First‐principles DFT calculations are carried out to study the changes in structures and electronic properties of two‐dimensional single‐layer graphene in the presence of non‐covalent interactions induced by carbon and boron fullerenes (C60, C70, C80 and B80). Our study shows that larger carbon fullerene interacts more strongly than the smaller fullerene, and boron fullerene interacts more strongly than that of its carbon analogue with the same nuclearity. We find that van der Waals interactions play a major role in governing non‐covalent interactions between the adsorbed fullerenes and graphene. Moreover, a greater extent of van der Waals interactions found for the larger fullerenes, C80 and B80, relative to smaller C60, and consequently, results in higher stabilisation. We find a small amount of electron transfer from graphene to fullerene, which gives rise to a hole‐doped material. We also find changes in the graphene electronic band structures in the presence of these surface‐decorated fullerenes. The Dirac cone picture, such as that found in pristine graphene, is significantly modified due to the re‐hybridisation of graphene carbon orbitals with fullerenes orbitals near the Fermi energy. However, all of the composites exhibit perfect conducting behaviour. The simulated absorption spectra for all of the graphene–fullerene hybrids do not exhibit a significant change in the absorption peak positions with respect to the pristine graphene absorption spectrum. Additionally, we find that the hole‐transfer integral between graphene and C60 is larger than the electron‐transfer integrals and the extent of these transfer integrals can be significantly tuned by graphene edge functionalisation with carboxylic acid groups. Our understanding of the non‐covalent functionalisation of graphene with various fullerenes would promote experimentalists to explore these systems, for their possible applications in electronic and opto‐electronic devices.  相似文献   

4.
We computationally study the transition process of a chiral difluorobenzo[c]phenanthrene (DFBcPh) molecule within non‐polar fullerene C260 to explore the confinement effect. We find blue‐shifts in the infrared and Raman spectra of the molecule inside the fullerene relative to those of isolated systems. Six types of spectrum features of the molecule appear in the 0–60 cm?1 band. Interestingly, the energy barrier of the chiral transformation of the molecule is elevated by 15.88 kcal mol?1 upon the confinement by the fullerene, indicating improvement in the stability of the enantiomers. The protection by C260 lowers the highest occupied molecular orbital energy level and lifts the lowest unoccupied molecular orbital energy level of the chiral molecule such that the chiral molecule is further chemically stabilized. We concluded that the confinement environment has an impact at the nanoscale on the enantiomer transformation process of the chiral molecule.  相似文献   

5.
Summary The use of buckminsterfullerene (C60) carbon clusters as a matrix for MALDI-TOFMS of uranium determination was studied. The C60 fullerene is easily ionized either to C60- or C60+ ions and when increasing the laser energy, the destruction of C60 to C58  相似文献   

6.
The study of the structure and conformational properties of the disilane molecule in the C80 and B47N33 fullerene cavities using the PBE/3ζ DFT method showed that the encapsulated molecule contains a shortened Si–Si bond, carries a certain electric charge, and exhibits a noticeable increase in the potential barrier to rotation around the Si–Si bond. At the same time, in the case of fullerene Si60, the observed effects, with the exception of the electric charge on the guest molecule, do not appear. For the Si2H6@C60 system, in the course of geometry optimization, a virtual reaction of disilane with the carbon skeleton of the nanoobject occurs with Si–Si bond cleavage and the formation of two SiH3 fragments bonded to fullerene carbon atoms.  相似文献   

7.
Leading position among numerous methods for synthesis of star polymers is occupied, as regards their potential and diversity, by techniques based on the anionic polymerization. The review considers five basic approaches to application of the anionic polymerization mechanisms in relation to an agent used or procedure employed (methods with polyfunctional coupling agents, multifunctional initiators, polymerizing and nonpolymerizing divinyl agents; multistage methods, methods using C60 fullerene). All groups of syntheses are illustrated by examples, and advantages of methods for synthesis of various homo- and heteroarm star structures are demonstrated. Particular attention is given to syntheses with C60 fullerene. The potential of C60 fullerene as a coupling agent for “living” polymer chains and methods for conversion of polymeric derivatives of C60 (hexaadducts) to polyfunctional macroinitiators of anionic polymerization are described and techniques for functionalization of polymeric fullerene derivatives and their coupling into structures with a complex controllable architecture are presented.  相似文献   

8.
The electrochemically active polymers have been formed during electro-reduction carried out in solution containing fullerenes, C60 or C70, and transition metal complexes of Pd(II), Pt(II), Rh(III), and Ir(I). In these films, fullerene moieties are covalently bounded to transition metal atoms (Pd and Pt) or their complexes (Rh and Ir) to form a polymeric network. All films exhibit electrochemical activity at negative potentials due to the fullerene cages reduction process. For all studied metal complexes, yields of formation of films containing C70 are higher than yields of electrodeposition of their C60 analogs. C70 /M films also exhibit higher porosity in comparison to C60/M layers. The differences in film morphology and efficiency of polymer formation are responsible for differences in electrochemical responses of these films in acetonitrile containing supporting electrolyte only. C70/M films shows more reversible voltammeric behavior in negative potential range. They also show higher potential range of electrochemical stability. Processes of film formation and electrochemical properties of polymers depend on the transition metal ions or atoms bonding fullerene cages into polymeric network. The highest efficiency of polymerization was observed for fullerene/Pd and fullerene/Rh films. In the case of fullerene/Pd films, the charge transfer processes related to the fullerene moieties reduction in negative potential range exhibit the best reversibility among all of the studied systems. Capacitance performances of C60/Pd and C70/Pd films deposited on the porous Au/quartz electrode were also compared. Capacitance properties of both films are significantly affected by the conditions of electropolymerization. Only a fraction of the film having a direct contact with solution contributes to pseudocapacitance. Capacitance properties of these films also depend on the size of cations of supporting electrolyte. The C70/Pd film exhibits much better capacitance performance comparison to C60/Pd polymer.  相似文献   

9.
The results of the theoretical investigation of the behavior of fullerenes C20 and C60 inside the icosahedral external shell on example of carbon nanoclusters, C20240 and C60540, are presented in this article. The multiwell potential of interaction between fullerenes in investigated nanoclusters is calculated to reveal the regularities of moving for internal fullerene in the field of holding potential of the external shell. The possible variants of fullerenes C20 and C60 moving between the potential wells are predicted on base of topology data of the fullerenes relative positioning in nanoparticle and analysis of relief of the energy surface of interaction between fullerenes. The formulated prediction is confirmed by the data of the numerical experiment. The investigation of two‐shell fullerenes allows to conclude that the light fullerene С20 will probably jump between the potential wells already at small temperatures (139–400 K) if the external shell is slightly bigger. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
A novel BOPHY–fullerene C60 dyad ( BP-C60 ) was designed as a heavy-atom-free photosensitizer (PS) with potential uses in photodynamic treatment and reactive oxygen species (ROS)-mediated applications. BP-C60 consists of a BOPHY fluorophore covalently attached to a C60 moiety through a pyrrolidine ring. The BOPHY core works as a visible-light-harvesting antenna, while the fullerene C60 subunit elicits the photodynamic action. This fluorophore–fullerene cycloadduct, obtained by a straightforward synthetic route, was fully characterized and compared with its individual counterparts. The restricted rotation around the single bond connecting the BOPHY and pyrrolidine moieties led to the formation of two atropisomers. Spectroscopic, electrochemical, and computational studies disclose an efficient photoinduced energy/electron transfer process from BOPHY to fullerene C60. Photodynamic studies indicate that BP-C60 produces ROS by both photomechanisms (type I and type II). Moreover, the dyad exhibits higher ROS production efficiency than its individual constitutional components. Preliminary screening of photodynamic inactivation on bacteria models (Staphylococcus aureus and Escherichia coli) demonstrated the ability of this dyad to be used as a heavy-atom-free PS. To the best of our knowledge, this is the first time that not only a BOPHY–fullerene C60 dyad is reported, but also that a BOPHY derivative is applied to photoinactivate microorganisms. This study lays the foundations for the development of new BOPHY-based PSs with plausible applications in the medical field.  相似文献   

11.
The endohedral fullerene CH4@C60, in which each C60 fullerene cage encapsulates a single methane molecule, has been synthesized for the first time. Methane is the first organic molecule, as well as the largest, to have been encapsulated in C60 to date. The key orifice contraction step, a photochemical desulfinylation of an open fullerene, was completed, even though it is inhibited by the endohedral molecule. The crystal structure of the nickel(II) octaethylporphyrin/ benzene solvate shows no significant distortion of the carbon cage, relative to the C60 analogue, and shows the methane hydrogens as a shell of electron density around the central carbon, indicative of the quantum nature of the methane. The 1H spin‐lattice relaxation times (T1) for endohedral methane are similar to those observed in the gas phase, indicating that methane is freely rotating inside the C60 cage. The synthesis of CH4@C60 opens a route to endofullerenes incorporating large guest molecules and atoms.  相似文献   

12.
13.
Noncovalent interactions of free-base phthalocyanine (H2Pc) with closed-cap armchair (5,5) and zigzag (10,0) single-walled carbon nanotubes (ANT and ZNT, respectively), as well as, for comparison, with C60 and C80(I h) fullerenes, whose hemispheres were used to close the ends of nanotube models, were studied theoretically by using one pure dispersion-corrected GGA functional (PBE with a long-range dispersion correction by Grimme, or PBE+D) and two hybrid meta exchange-correlation functionals (M05-2X and M06-2X). Strong complexation was observed in all four systems studied. The general trend found is that the interaction strength increases with the size (number of C atoms) of carbon nanocluster, that is, in the order of ZNT > ANT > C80 > C60. Depending on the DFT functional employed, the interaction strength decreased in the order of PBE+D > M06-2X > M05-2X. A common feature for the geometry of all four complexes considered, reproduced in all the calculations, is that H2Pc macrocycle undergoes strong distortion, which allows for increasing its contact surface with the nanotube sidewall or spherical fullerene, and therefore makes π-π interactions more efficient.  相似文献   

14.
Fullerene (C60), the third carbon allotrope, is a classical engineered material with the potential application in biomedicine. However, extremely high hydrophobicity of fullerene hampers its direct biomedical evaluation and application. In this work, we investigated the solubilization of fullerene using 9 different solubility enhancers: Tween 20, Tween 60, Tween 80, Triton X-100, PVP, polyoxyethylene (10) lauryl ether, n-dodecyl trimethylammonium chloride, myristyl trimethylammonium bromide and sodium dodecyl sulphate and evaluated its antioxidant activity in biorelevant media. The presence of C60 entrapped in surfactant micelles was confirmed by UV/VIS spectrometry. The efficacy of each modifier was evaluated by chemometric analysis using experimental data for investigating the relationship between solubilization and particle size distribution. Hierarchical clustering and principal component analysis was applied and showed that non-ionic surfactants provide better solubilization efficacy (>85%). A correlation was established (r = 0.975) between the degree of solubilization and the surfactant structure. This correlation may be used for prediction of C60 solubilization with non-tested solubility modifiers. Since the main potential biomedical applications of fullerene are based on its free radical quenching ability, we tested the antioxidant potential of fullerene micellar solutions. Lipid peroxidation tests showed that the micellar solutions of fullerene with Triton and polyoxyethylene lauryl ether kept high radical scavenging activity, comparable to that of aqueous suspension of fullerene and BHT. The results of this work provide a platform for further solubilization and testing of pristine fullerene and its hydrophobic derivatives in a biological benign environment.  相似文献   

15.
The solubility of fullerene C60 and a fullerene mixture [C60 (75%), C70 (24%), C76–80 (1%)] in linear alkanoic acids (C2–C9) was determined at 20°C. The solubilities of C60 and a fullerene mixture in carboxylic acids were examined in relation to the number of carbon atoms in the carboxylic acid.  相似文献   

16.
The structures, stabilities, and electronic properties of the endohedral fullerene GeH4@C60 have been systematically studied by using the hybrid DFT-B3PW91 functional in conjunction with 6-31G(d) basis sets. Our calculated results show that the GeH4 molecule is more compact in the center of the C60 cage and exists in molecular form inside the fullerene. The Zero-Point and BSSE corrected binding energy of GeH4@C60 is −1.77 eV. The calculated HOMO–LUMO energy gap, the vertical ionization potentials (VIP) and vertical electron affinities (VEA) are similar to that of C60 cage. It is indicated that GeH4@C60 also seems to be very stable species. Natural population analysis on the GeH4@C60 reveals that the central GeH4 only gain −0.06 charges from the C60 cage. Additionally, the vibrational frequencies and active infrared intensities of GeH4@C60 are also discussed.  相似文献   

17.
We have investigated the stepwise addition of four growing methyl methacrylate (MMA) radicals to C60 fullerene, taking into account all possible types of the formed adducts. This reaction set is a reliable approximation for understanding the MMA polymerization process in the presence of C60 fullerene. We have analyzed the structures of the fullerene-MMA adducts and energy parameters of their formation (heat effects and activation enthalpies). We found that up to three MMA growing radicals are favorably attached to C60 as the fullerene-MMA trisadduct is a stable radical of the allyl type. It is inactive for further radical addition, and the elimination of the hydrogen atom from the growing MMA radical becomes preferable. The effects of steric factors and structures of the products of multiple growing MMA radical additions to C60 on the radical polymerization of MMA in the presence of C60 fullerene are considered.  相似文献   

18.
The self‐consistent charge density functional tight‐binding (DFTB) theory is a useful tool for realizing the electronic structures of large molecular complex systems. In this study, the electronic structure of C61 formed by fullerene C60 with a carbon adatom is analyzed, using the fully localized limit and pseudo self‐interaction correction methods of DFTB to adjust the Hubbard U parameter (DFTB + U). The results show that both the methods used to adjust U can significantly reduce the molecular orbital energy of occupied states localized on the defect carbon atom and improve the gap between highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) of C61. This work will provide a methodological reference point for future DFTB calculations of the electronic structures of carbon materials.  相似文献   

19.
The equilibrium geometric parameters and normal vibration frequencies of the C60H2, C60H18, and C60H60 molecules were determined using density functional theory at the B3LYP/6-31G* level. The results were used to calculate the thermodynamic properties of the substances in the ideal gas state. The heat capacity of crystalline hydrofullerenes was modeled and the enthalpies of their sublimation estimated. The thermodynamic parameters of the hydrogenation of fullerene C60 were analyzed.  相似文献   

20.
Phase diagrams of multi‐wall carbon nanotube (MWNT)/nematic liquid crystal (E7) and buckminsterfullerene (C60I h)/nematic liquid crystal (E7) binary systems have been investigated by means of polarizing optical microscopy and differential scanning calorimetry. It was found that the isotropic–nematic phase transition temperature (T NI) of the liquid crystal component was enhanced by the incorporation of MWNT within a small composition gap. A chimney‐type phase diagram can be identified in the MWNT/E7 mixture over a narrow range of ~0.1–0.2% MWNT concentration. Upon substituting the nanotubes with isotropic fillers such as fullerene, the (C60I h)/E7 blend showed no discernible change of T NI in the same concentration range of the chimney of the MWNT/E7 mixture, suggesting a significant contribution of anisotropy (or the aspect ratio) of the nanotubes to the entropy of the system containing liquid crystal molecules. This enhanced T NI phenomenon may be attributed to anisotropic alignment of liquid crystal molecules along the carbon nanotube bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号