首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We consider the parallel factorization of sparse finite element matrices on distributed memory machines. Our method is based on a nested dissection approach combined with a cyclic re‐distribution of the interface Schur complements. We present a detailed definition of the parallel method, and the well‐posedness and the complexity of the algorithm are analyzed. A lean and transparent functional interface to existing finite element software is defined, and the performance is demonstrated for several representative examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
王淑燕  陈焕贞 《计算数学》2012,34(2):125-138
本文对具间断系数的二阶椭圆界面问题提出一种浸入有限元方法(theimmersed finite element method), 即在界面单元上采用依赖于界面的线性多项式空间离散, 而在非界面单元上采用Crouzeix-Raviart非协调元离散. 论证表明, 该方法具有对界面问题解的最优L2-模和H1-模收敛精度.  相似文献   

3.
Andreas Hahn  Lutz Tobiska 《PAMM》2012,12(1):515-516
We present a finite element method for the flow of two immiscible incompressible fluids in two and three dimensions. Thereby the presence of surface active agents (surfactants) on the interface is allowed, which alter the surface tension. The model consists of the incompressible Navier-Stokes equations for velocity and pressure and a convection-diffusion equation on the interface for the distribution of the surfactant. A moving grid technique is applied to track the interface, on that account a Arbitrary-Lagrangian-Eulerian (ALE) formulation of the Navier-Stokes equation is used. The surface tension force is incorporated directly by making use of the Laplace-Beltrami operator technique [1]. Furthermore, we use a finite element method for the convection-diffusion equation on the moving hypersurface. In order to get a high accurate method the interface, velocity, pressure, and the surfactant concentration are approximated by isoparametric finite elements. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this article, we study superconvergence properties of immersed finite element methods for the one dimensional elliptic interface problem. Due to low global regularity of the solution, classical superconvergence phenomenon for finite element methods disappears unless the discontinuity of the coefficient is resolved by partition. We show that immersed finite element solutions inherit all desired superconvergence properties from standard finite element methods without requiring the mesh to be aligned with the interface. In particular, on interface elements, superconvergence occurs at roots of generalized orthogonal polynomials that satisfy both orthogonality and interface jump conditions.  相似文献   

5.
We consider a symmetric Galerkin method for the coupling of finite elements and boundary elements for elliptic problems with a monotone operator in the finite element domain. We derive an a posteriori error estimator which involves the solution of equilibrated local Neumann problems in the finite element domain and requires computation of a residual term on the coupling interface. Finally, we discuss a similar approach for a coupling with Signorini contact conditions on the interface. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
We derive new a priori error estimates for linear parabolic equations with discontinuous coefficients. Due to low global regularity of the solutions the error analysis of the standard finite element method for parabolic problems is difficult to adopt for parabolic interface problems. A finite element procedure is, therefore, proposed and analyzed in this paper. We are able to show that the standard energy technique of finite element method for non-interface parabolic problems can be extended to parabolic interface problems if we allow interface triangles to be curved triangles. Optimal pointwise-in-time error estimates in the L 2(Ω) and H 1(Ω) norms are shown to hold for the semidiscrete scheme. A fully discrete scheme based on backward Euler method is analyzed and pointwise-in-time error estimates are derived. The interfaces are assumed to be arbitrary shape but smooth for our purpose.  相似文献   

7.
In this article, we consider a class of unfitted finite element methods for scalar elliptic problems. These so-called CutFEM methods use standard finite element spaces on a fixed unfitted triangulation combined with the Nitsche technique and a ghost penalty stabilization. As a model problem we consider the application of such a method to the Poisson interface problem. We introduce and analyze a new class of preconditioners that is based on a subspace decomposition approach. The unfitted finite element space is split into two subspaces, where one subspace is the standard finite element space associated to the background mesh and the second subspace is spanned by all cut basis functions corresponding to nodes on the cut elements. We will show that this splitting is stable, uniformly in the discretization parameter and in the location of the interface in the triangulation. Based on this we introduce an efficient preconditioner that is uniformly spectrally equivalent to the stiffness matrix. Using a similar splitting, it is shown that the same preconditioning approach can also be applied to a fictitious domain CutFEM discretization of the Poisson equation. Results of numerical experiments are included that illustrate optimality of such preconditioners for the Poisson interface problem and the Poisson fictitious domain problem.  相似文献   

8.
A second order accurate method in the infinity norm is proposed for general three dimensional anisotropic elliptic interface problems in which the solution and its derivatives, the coefficients, and source terms all can have finite jumps across one or several arbitrary smooth interfaces. The method is based on the 2D finite element-finite difference (FE-FD) method but with substantial differences in method derivation, implementation, and convergence analysis. One of challenges is to derive 3D interface relations since there is no invariance anymore under coordinate system transforms for the partial differential equations and the jump conditions. A finite element discretization whose coefficient matrix is a symmetric semi-positive definite is used away from the interface; and the maximum preserving finite difference discretization whose coefficient matrix part is an M-matrix is constructed at irregular elements where the interface cuts through. We aim to get a sharp interface method that can have second order accuracy in the point-wise norm. We show the convergence analysis by splitting errors into several parts. Nontrivial numerical examples are presented to confirm the convergence analysis.  相似文献   

9.
This work presents a novel two-dimensional interface-fitted adaptive mesh method to solve elliptic problems of jump conditions across the interface, and its application in free interface problems with surface tension. The interface-fitted mesh is achieved by two operations: (i) the projection of mesh nodes onto the interface and (ii) the insertion of mesh nodes right on the interface. The interface-fitting technique is combined with an existing adaptive mesh approach which uses addition/subtraction and displacement of mesh nodes. We develop a simple piecewise linear finite element method built on this interface-fitted mesh and prove its almost optimal convergence for elliptic problems with jump conditions across the interface. Applications to two free interface problems, a sheared drop in Stokes flow and the growth of a solid tumor, are presented. In these applications, the interface surface tension serves as the jump condition or the Dirichlet boundary condition of the pressure, and the pressure is solved with the interface-fitted finite element method developed in this work. In this study, a level-set function is used to capture the evolution of the interface and provide the interface location for the interface fitting.  相似文献   

10.
In this article, we develop a partially penalty immersed interface finite element (PIFE) method for a kind of anisotropy diffusion models governed by the elliptic interface problems with discontinuous tensor‐coefficients. This method is based on linear immersed interface finite elements (IIFE) and applies the discontinuous Galerkin formulation around the interface. We add two penalty terms to the general IIFE formulation along the sides intersected with the interface. The flux jump condition is weakly enforced on the smooth interface. By proving that the piecewise linear function on an interface element is uniquely determined by its values at the three vertices under some conditions, we construct the finite element spaces. Therefore, a PIFE procedure is proposed, which is based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. Then we prove the consistency and the solvability of the procedure. Theoretical analysis and numerical experiments show that the PIFE solution possesses optimal‐order error estimates in the energy norm and norm.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1984–2028, 2014  相似文献   

11.
12.
《计算数学(英文版)》2023,41(4):771-796
We propose an accurate and energy-stable parametric finite element method for solving the sharp-interface continuum model of solid-state dewetting in three-dimensional space. The model describes the motion of the film\slash vapor interface with contact line migration and is governed by the surface diffusion equation with proper boundary conditions at the contact line. We present a weak formulation for the problem, in which the contact angle condition is weakly enforced. By using piecewise linear elements in space and backward Euler method in time, we then discretize the formulation to obtain a parametric finite element approximation, where the interface and its contact line are evolved simultaneously. The resulting numerical method is shown to be well-posed and unconditionally energy-stable. Furthermore, the numerical method is generalized to the case of anisotropic surface energies in the Riemannian metric form. Numerical results are reported to show the convergence and efficiency of the proposed numerical method as well as the anisotropic effects on the morphological evolution of thin films in solid-state dewetting.  相似文献   

13.
一种有限元-边界元耦合分域算法   总被引:1,自引:0,他引:1  
提出了一种有限元-边界元耦合分域算法.该算法将所分析问题的区域分解成有限元和边界元子域,在满足两子域界面上位移和面力协调连续的条件下,通过迭代求解得到问题的解.在迭代求解过程中,引入动态松弛系数,使收敛得以加速.该方法在两子域界面上有限单元结点和边界单元结点的位置相互独立,无需协调一致,对诸如裂纹扩展过程的模拟具有独特的优势.用所提出的耦合算法分析算例,得到的结果与有限元法、边界元法和另一种耦合算法的数值计算结果一致,验证了这种算法的正确性和可行性.  相似文献   

14.
This paper is concerned with the analysis of a finite element method for nonhomogeneous second order elliptic interface problems on smooth domains. The method consists in approximating the domains by polygonal domains, transferring the boundary data in a natural way, and then applying a finite element method to the perturbed problem on the approximate polygonal domains. It is shown that the error in the finite element approximation is of optimal order for linear elements on a quasiuniform triangulation. As such the method is robust in the regularity of the data in the original problem.  相似文献   

15.
The purpose of this paper is to study the effect of the numerical quadrature on the finite element approximation to the exact solution of elliptic equations with discontinuous coefficients. Due to low global regularity of the solution, it seems difficult to achieve optimal order of convergence with classical finite element methods [Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998) 175-202]. We derive error estimates in finite element method with quadrature for elliptic interface problems in a two-dimensional convex polygonal domain. Optimal order error estimates in L2 and H1 norms are shown to hold even if the regularity of the solution is low on the whole domain. Finally, numerical experiment for two dimensional test problem is presented in support of our theoretical findings.  相似文献   

16.
In this paper, we propose and analyze a fully discrete local discontinuous Galerkin (LDG) finite element method for time-fractional fourth-order problems. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Stability is ensured by a careful choice of interface numerical fluxes. We prove that our scheme is unconditional stable and convergent. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

17.
This paper presents a heterogeneous finite element method fora fluid–solid interaction problem. The method, which combinesa standard finite element discretization in the fluid regionand a mixed finite element discretization in the solid region,allows the use of different meshes in fluid and solid regions.Both semi-discrete and fully discrete approximations are formulatedand analysed. Optimal order a priori error estimates in theenergy norm are shown. The main difficulty in the analysis iscaused by the two interface conditions which describe the interactionbetween the fluid and the solid. This is overcome by explicitlybuilding one of the interface conditions into the finite elementspaces. Iterative substructuring algorithms are also proposedfor effectively solving the discrete finite element equations.  相似文献   

18.
Thomas-Peter Fries 《PAMM》2015,15(1):507-508
The simulation of immiscible two-phase flows is a challenging task, in particular with higher-order accuracy. We use an interface capturing approach combined with the extended finite element method (XFEM) to represent inner-element jumps and kinks across the interface. The position of the interface is defined by the curved zero-level set of a higher-order scalar function. Here, we focus on the higher-order accurate integration on the two sides of the interface (i.e., the zero-level set). (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We analyze an immersed interface finite element method based on linear polynomials on noninterface triangular elements and piecewise linear polynomials on interface triangular elements. The flux jump condition is weakly enforced on the smooth interface. Optimal error estimates are derived in the broken H 1-norm and L 2-norm.  相似文献   

20.
This article concerns numerical approximation of a parabolic interface problem with general $L^2$ initial value. The problem is discretized by a finite element method with a quasi-uniform triangulation of the domain fitting the interface, with piecewise linear approximation to the interface. The semi-discrete finite element problem is furthermore discretized in time by the $k$-step backward difference formula with $ k=1,\ldots,6 $. To maintain high-order convergence in time for possibly nonsmooth $L^2$ initial value, we modify the standard backward difference formula at the first $k-1$ time levels by using a method recently developed for fractional evolution equations. An error bound of $\mathcal{O}(t_n^{-k}\tau^k+t_n^{-1}h^2|\log h|)$ is established for the fully discrete finite element method for general $L^2$ initial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号