首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of Mg pivalate hydrate, Mg(H2O)6(Piv)2 · 3H2O (HPiv = (CH3)3CCOOH) are synthesized and their structure is determined by X-ray diffraction method. The crystals are rhombic: a = 10.917(2) Å, b = 12.625(2) Å, c = 31.394(8) Å, Z = 8, space group Pbca, R 1 = 0.0525. The Mg atom has octahedral surrounding of the O atoms of water molecules (Mg-O 2.044–2.137 Å). The cationic chains of [Mg(H2O)6] 2+ lie in the voids of doubled network anionic layers of [(H2O)3(Piv)2] ∞∞ 2? . Inside the layer, the pivalate anions alternate with water molecules in the xy plane, being bonded to them by hydrogen bonds. The cationic chains and the anionic layers are united into layered packs by hydrogen bonds between coordinated water molecules and pivalate anions and between coordinated and crystal hydrate water molecules.  相似文献   

2.
The clathrate [Zn(C6H5COO)2(H2O)2] · 2CH3COOH (I) was obtained for the first time from zinc(II) benzoate. The individuality, the unit cell parameters, and the number of “guest” molecules in complex I were determined from X-ray diffraction and derivatographic data. Its crystal structure was solved.  相似文献   

3.
A new neptunium(V) complex [(NpO2)2(CH3COO)2(H2O)] ? 2H2O was synthesized and its crystal structure was determined. The unit cell parameters are: a = 24.007(10) Å, b = 6.779(3) Å, c = 8.076(3) Å, space group Pnma, Z = 4, V = 1314.2(9) Å3, R = 0.049, wR(F2) = 0.105. The crystal structure of the compound is composed of neutral [(NpO2)2(CH3COO)2(H2O)] layers and molecules of the water of crystallization. Each of the crystallographically independent neptunoyl ions performs a bidentate function thus forming a composite system of cation-cation bonds.  相似文献   

4.
The title compound, cobalt 4′,7-diethoxylisoflavone-3′-sulfonate([Co(H2O)6](X)2⋅8H2O, X = C19H17O4SO3) was synthesized and its structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in the triclinic space group P-1 with cell parameters a = 9.026(3) Å, b = 16.431(5) Å, c = 18.195(6) Å, α = 72.289(4), β = 87.498(4), γ = 82.775(5), V = 2550.1(13) Å−3, Dc = 1.419 Mg m−3, and Z = 2. The results show that the title compound consists of one cobalt cation, six coordinated water molecules, eight lattice water molecules, and two 4′,7-diethoxylisoflavone-3′-sulfonate anions, C19H17O4SO3. Two anions have different conformations. Twelve H atoms of six coordinated water molecules, as donors, form hydrogen bonds with four oxygen atoms of sulfo-groups of two anions and eight oxygen atoms of eight lattice water molecules. In addition, π < eqid1 > ⋅ < eqid2 > π stacking interactions exist in the crystal structure, which together with hydrogen bonds lead to supramolecular formation with a three-dimensional network.  相似文献   

5.
Single crystals of Li(H3O)[UO2(C2O4)2(H2O)] · H2O (I) have been synthesized and studied by X-ray diffraction. Compound I crystallizes in the monoclinic crystal system with the unit cell parameters: a = 7.1682(10) Å, b = 29.639(6) Å, c = 6.6770(12) Å, β= 112.3(7)°, space group P 21/c, Z = 4, R = 4.36%. Structure I contains discrete mononuclear groups [UO2(C2O4)2(H2O)]2? ascribed to the crystal-chemical group AB 2 01 M1 (A = UO2 2+, B01 =C2O 4 2? , M1 = H2O), which are “cross-linked” by the lithium ions into infinite layers {Li(UO2)(C2O4)2(H2O)2}? perpendicular to [010]. The hydroxonium ions are located between adjacent uranium-containing layers. A hydrogen bond system involving water molecules, oxalate ions, and hydroxonium combines the anionic layers into a three-dimensional framework.  相似文献   

6.
Solubility isotherms of water–sulfonol–hydrochloric (or sulfuric) acid and water–sodium dodecyl sulfate–hydrochloric acid systems at 75°C and a water–sodium dodecyl sulfate–sulfuric acid system at 50°C are constructed. Regions of two-phase liquid equilibrium suitable for use in extraction are found. Concentration parameters for extraction are determined. The interfacial distribution of a series of metal ions with and without such additional complexing reagents as diantipyrylmethane and diantipyrylheptane is studied.  相似文献   

7.
A method for the synthesis of potassium pivalates (trimethylacetates) from potassium tert-butoxide and pivalic acid was proposed. The complexes of the formulas [K(H2O)(Piv)](I) and [K2(Phen)(H2O)2(Piv)2] (II) (Piv denotes the pivalate anion and Phen denotes 1,10-phenanthroline) were obtained and characterized by elemental analysis and IR and 1H NMR spectroscopy. The crystal structures of complexes I and II were determined using X-ray diffraction. Crystal structure I has a layered motif with two nonequivalent K atoms (C.N.s 5 + 2 and 6). The coordination of phenanthroline in II gives rise to a ribbon motif, the structure containing three nonequivalent K atoms (C.N.s 6, 6 + 1, and 8).  相似文献   

8.
[Cd(NTO)4Cd(H2O)6] •4H2O was synthesized by mixing the aqueous solution of 3-nitro-1, 2,4-triazol-5-one (NTO) and cadmium carbonate. The single crystal structure was determined by a four-circle X-ray diffractometer. The crystal is monoclinic, space group C2/c with crystal parameters of a = 2.1229(3) nm, b = 0.6261(8) nm, = 2.1165(3) nm, β= 90.602 (3)°, V= 2.977(6) nm3, Z = 4, Dc = 2.055 g • cm-3, μ = 15.45 cm-1 and F(000) = 1824. 2523 observable independent reflections with F04σ(F0) were used for the determination and refinement of the crystal structure. Lorentz-polarization and absorption correction were applied. The final R is 0.0282 and wR = 0.0792. The analytical results show that the Cd+2 has two kinds of coordinate bonds in one crystal. One Cd+2 coordinates with 4 NTO anions and another coordinates with 6 water molecules to form a binucleate complex with a structure of tetrahedron and tetragonal bipyramid, respectively. By using SCF-PM3-MO method, the electron structure of cadmium complex of NTO has been calculated. The analysis of the calculated results shows that when [Cd(NTO)4Cd(H2O)6] • 4H2O is heated, the crystallization waters will be dissociated first and the ligand waters second and NO2 group has priority of leaving when NTO is decomposed. Analysis of the energy level and composition of localized molecular orbitals indicates that both the two Cd2+ bond to the coordinating atom with 5s  相似文献   

9.
The system hydrogen peroxide–hexafluoroacetone sesquihydrate effectively oxidizes adamantane in the presence of VO(acac)2 to afford 64% of adamantan-1-ol in tert-butyl alcohol or 76% of adamantan-2-one in a mixture of acetic acid with pyridine.  相似文献   

10.
An individual crystalline compound Pb(UO2)2O2(OH)2·(H2O) was obtained by reaction of synthetic schoepite UO3·2.25H2O with an aqueous solution of lead(II) nitrate under hydrothermal conditions. The composition and structure of this compound were determined, and the processes of its dehydration and thermal decomposition were studied by chemical analysis, X-ray diffraction, IR spectroscopy, and thermography.  相似文献   

11.
[Ln(H2O)8][Cr(NCS)6] · 5H2O aqua complexes, where Ln = Er (1), Lu (2), have been found in an aqueous solution instead of binary complex salts with an organic ligand in their cation, when crystal products of the reaction between Ln(NO3)3 · 6H2O (Ln = Er, Lu), K3[Cr(NCS)6] · 4H2O, and 8-oxyquinoline (C9H7NO) were studied by X-ray diffraction. Crystals of complexes 1 and 2 are isostructural and crystallize in triclinic system, space group P\(\bar 1\), Z = 2. For complex 1: a = 9.0677(4) Å, b = 9.3115(4) Å, c = 16.9595 Å, α = 81.526(2)°, β = 86.153(2)°, γ = 83.879(2)°, V = 1406.33(10) Å3, ρcalc = 1.894 g/cm3; for complex 2: a = 9.0438(3) Å, b = 9.2880(3) Å, c = 16.9181(3) Å, α = 81.7250(10)°, β = 86.1600(10)°, γ = 83.8850(10)°, V = 1396.38(7) Å3, ρcalc = 1.926 g/cm3.  相似文献   

12.
The crystal structure of complex [Mg(H2O)6][VO(edta)] · 3.5H2O (I) was determined by X-ray diffraction study. The crystals are monoclinic, a = 6.779 Å, b = 13.373(6) Å, c = 25.054 Å, β = 96.55°, Z = 4, space group P21. The unit cell contains two independent [VO(edta)]2? anions, two independent [Mg(H2O)6]2+ cations, and seven crystal-water molecules. The coordination polyhedron of each vanadium atom is formed by five donor atoms of the edta ligand (2N + 3O) (V(1)-N(1), 2.278 Å; V(1)-N(2), 2.149 Å; V(2)-N(3), 2.301 Å; V(2)-N(4), 2.165 Å; V-O(acet), 2.00 ± 0.02 Å) and the oxygen atom of the oxo group (V-O, 1.60 ± 0.01 Å). The edta ligands and the vanadium atom form three glycinate rings: two R-type rings and one G-type ring (one acetate branch remains free), as well as an E-type ring with an asymmetric gauche configuration. The [Mg(H2O)6] cations are slightly distorted octahedra (Mg-O, 2.013–2.132 Å, the OMgO angles are 86.6°–94.2°). The H2O molecules form a bifurcate system of H-bonds. The crystals of compound I belong to OD-type structures with an incomplete ordering of layers.  相似文献   

13.
Two opposite configuration (R/S) of chiral complexes (C8H11N)2 · Zn(OAc)2 (Ia and Ib—L-(−)-) and D-(+)-isomer) were synthesized by a simple one-pot method. The crystal structures of Ia and ib determined by X-ray crystallography.  相似文献   

14.
Under hydrothermal conditions, the complex [Mn(lmdc)2(H2O)2] · 2H2O (I) was synthesized and characterized by elemental analysis and IR spectrum (HImdc = 4,5-imidazofedicarboxylic acid). The crystal structure of I was determined by single-crystal X-ray diffraction (crystallizing in the monoclinic crystal system, P 2/c space group, a = 11.000(2), b = 7.1281(14), c = 12.696(3) Å, β = 122.45(3), Z = 2. In I, the Mn2+ ion was chelated by two Imdc with one of their nitrogen atoms and a carboxylic oxygen atom, while two water molecules occupy the axial position of the Mn atom forming a distorted octahedral geometry. Three-dimensional structure of I was formed by intermolecular hydrogen bonds. UV-Vis and fluorescence spectra of I interacting with DNA show that insertion is the main binding mode between I and fish sperm DNA. Gel electrophoresis shows that I cleaves both supercoiled and circular pBR322 DNA to form a small molecular fragment.  相似文献   

15.
The crystal structure of a double complex salt of the composition [Au(en)2]2[Cu(C2O4)2]3·8H2O (en = ethylenediamine) at 150 K is determined by single crystal X-ray diffraction. The crystal data for C20H48Au2Cu3N8O32 are: a = 9.1761(3) Å, b = 16.9749(6) Å, c = 13.4475(5) Å, β = 104.333(1)°, V = 2029.43(12) Å3, P21/c space group, Z = 2, d x = 2.450 g/cm3. It is demonstrated that the thermal decomposition of the double complex salt in a helium or hydrogen atmosphere affords the solid solution Au0.4Cu0.6.  相似文献   

16.
A new Co(III) complex of 1,2-cyclohexanedionedioxime and thiocarbamide with an SO 4 2? anion and solvation water molecules in the outer sphere has been synthesized and its structure has been defined. Orthorhombic crystals, a = 11.659(2) Å, b = 26.448(5) Å, c = 30.142(6) Å, V = 9295(3) Å 3, Z = 8, dcalc = 1.599 g/cm3, space group Pbca; final R index is 0.0578 for 8221 reflections with I > 2σ(I). In the octahedral Co(III) complex, two 1,2-cyclohexanedionedioxime residues lie in the equatorial plane, while two thiocarbamide molecules are in the axial plane. Intramolecular bonds: N-H…O and O-H…O type hydrogen bonds and π-π interactions that stabilize the complex cations. In crystal, the components are linked by N-H…O and O-H…O hydrogen bonds into a 3D framework.  相似文献   

17.
Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products of the thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139 °C and the dehydroxylation occurs over the temperature range 200–700 °C with loss of the OH units. The critical temperature for OH loss is around 416 °C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788 °C. This study shows the mineral is unstable above 139 °C. This temperature is well above the temperature in the caves of 15 °C maximum. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given.  相似文献   

18.
Single crystal X-ray diffraction study of glycine phosphite C2H5NO2·H3PO3 was performed (monoclinic, space group P21/c, a = 7.401(3) Å, b = 8.465(3) Å, c = 9.737(3) Å; β = 100.73(5)°, Z = 4). It has been found that one of hydrogen atoms is located at the centre of symmetry forming two strong hydrogen bonds to yield H4P2O 6 ?2 dimers, while another hydrogen atom is statistically disordered over two positions and organizes the dimers into an infinite corrugated chain. The ordering of this hydrogen atom position and/or displacement of the other one from the centre of symmetry will lead to the loss of symmetry centre and lowering of the point group symmetry from C2h to piezo-active group C2 or C s .  相似文献   

19.
The structure of the salt Cs[Gd(H2O)4Re6Te8(CN)6]·4H2O (space group P-1, a = 9.436(5) Å, b = 12.365(7) Å, c = 15.187(8)Å, α = 89.104(10)°, β = 86.996(10)°, γ = 82.304(9)°) has been established by single crystal XRD. The structure of the compound features layers involving Gd3+ cations bound to cluster anions [Re6Te8(CN)6]4? through cyanide groups. The interlayer space contains cesium cations and crystallization water molecules.  相似文献   

20.
A novel lanthanide complex of [Nd(2-EOBA)3(phen)(H2O)]2 · H2O (2-EOBA = 2-ethoxylbenzoate, phen = 1,10-phenanthroline), has been synthesized and structurally characterized by single crystal X-ray diffraction. The complex crystallizes in monoclinic, space group P2(1)/n with a = 14.7453(18) Å, b = 12.3628(15) Å, c = 19.473(2) Å, α = 90°, β = 93.349(2)°, γ = 90°. Two Nd3+ ions are connected together by two bridging 2-EOBA ligands and each Nd3+ ion is further coordinated by two chelating 2-EOBA ligands, one chelating phen molecule and one water molecule. The coordination number of Nd3+ ion is nine. The coordination geometry of Nd3+ ion is a distorted monocapped square-antiprism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号