首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A microscopic polymer liquid-state theory has been developed for the structure, thermodynamics and mechanical properties of strained liquid crystalline elastomers. The theory captures the experimentally observed phenomenon of spontaneous distortion and establishes a direct correlation between it and the nematic order parameter. Strain induced softening of the elastic modulus is predicted to emerge due to coupling of the induced orientational order and anisotropic interchain excluded volume interactions. Comparison of our results with limited experiments shows good qualitative and sometimes quantitative agreement. The theory predicts that deformation in the liquid crystalline state results in an increase of the amplitude of density fluctuations (compressibility) which becomes more pronounced as chain degree of polymerization and/or segmental density are decreased.  相似文献   

3.
We have performed depolarized impulsive stimulated scattering experiments to observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from ~10-500 MHz. These measurements, in tandem with previously performed longitudinal and shear measurements, permit further analyses of the relaxation dynamics of TPP within the framework of the mode coupling theory. Our results provide evidence of α coupling between the shear and longitudinal degrees of freedom up to a decoupling temperature T(c) = 231 K. A lower bound length scale of shear wave propagation in liquids verified the exponent predicted by theory in the vicinity of the decoupling temperature.  相似文献   

4.
The recently developed activated barrier hopping theory of deeply supercooled polymer melts [K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 121, 1984 (2004)] is extended to the nonequilibrium glass state. Below the kinetic glass temperature T(g), the exact statistical mechanical relation between the dimensionless amplitude of long wavelength density fluctuations, S(0), and the thermodynamic compressibility breaks down. Proper extension of the theory requires knowledge of the nonequilibrium S(0) which x-ray scattering experiments find to consist of a material specific and temperature-independent quenched disorder contribution plus a vibrational contribution which varies roughly linearly with temperature. Motivated by these experiments and general landscape concepts, a simple model is proposed for S(0)(T). Deep in the glass state the form of the temperature dependence of the segmental relaxation time is found to depend sensitively on the magnitude of frozen in density fluctuations. At the (modest) sub-T(g) temperatures typically probed in experiment, an effective Arrhenius behavior is generically predicted which is of nonequilibrium origin. The change in apparent activation energy across the glass transition is determined by the amplitude of frozen density fluctuations. For values of the latter consistent with experiment, the theory predicts a ratio of effective activation energies in the range of 3-6, in agreement with multiple measurements. Calculations of the shear modulus for atactic polymethylmethacrylate above and below the glass transition temperature have also been performed. The present work provides a foundation for the formulation of predictive theories of physical aging, the influence of deformation on the alpha relaxation process, and rate-dependent nonlinear mechanical properties of thermoplastics.  相似文献   

5.
Random first-order transition theory is used to determine the role of attractive and repulsive interactions in the dynamics of supercooled liquids. Self-consistent phonon theory, an approximate mean field treatment consistent with random first-order transition theory, is used to treat individual glassy configurations, whereas the liquid phase is treated using common liquid-state approximations. Free energies are calculated using liquid-state perturbation theory. The transition temperature, T*A, the temperature where the onset of activated behavior is predicted by mean field theory; the lower crossover temperature, T*C, where barrierless motions actually occur through fractal or stringy motions (corresponding to the phenomenological mode coupling transition temperature); and T*K, the Kauzmann temperature (corresponding to an extrapolated entropy crisis), are calculated in addition to T*g, the glass transition temperature that corresponds to laboratory cooling rates. Relationships between these quantities agree well with existing experimental and simulation data on van der Waals liquids. Both the isobaric and isochoric behavior in the supercooled regime are studied, providing results for DeltaCV and DeltaCp that can be used to calculate the fragility as a function of density and pressure, respectively. The predicted variations in the alpha-relaxation time with temperature and density conform to the empirical density-temperature scaling relations found by Casalini and Roland. We thereby demonstrate the microscopic origin of their observations. Finally, the relationship first suggested by Sastry between the spinodal temperature and the Kauzmann temperatures, as a function of density, is examined. The present microscopic calculations support the existence of an intersection of these two temperatures at sufficiently low temperatures.  相似文献   

6.
Summary: In order to have better insight into the polymer specifics of the dynamic glass transition molecular dynamics (MD) computer simulations of three glass-formers have been carried out: low-molecular-weight isopropylbenzene (iPB), brittle atactic polystyrene (PS) and tough bisphenol A polycarbonate (PC). Simulation of the uniaxial deformation of these mechanically different types of amorphous polymers shows that the mechanical experimental data could be realistically reproduced. Now the objective is to study the local orientational mobility in the non-deformed isotropic state and to find the possible connection of the segmental dynamics with the different bulk mechanical properties. Local orientational mobility has been studied via Legendre polynomials of the second order and CONTIN analysis. Insight into local orientational dynamics on a range of length- and time scales is acquired. The fast transient ballistic process describing the very initial part of the relaxation has been observed for all temperatures. For all three simulated materials the slowing down of cage escape (α-relaxation) follows mode-coupling theory above Tg, with non-universal, material-specific exponents. Below Tg universal activated segmental motion has been found. At high temperature the α process is merged with the β process. The β process which corresponds to the motions within cage continues below Tg and can be described by an activation law.  相似文献   

7.
Molecular dynamics simulations are carried out to address the density-driven glass transition in a system of rodlike particles that interact with the Gay-Berne potential. Since crystallization occurs in this system on the time scale of the simulations, direct simulation of the glass transition is not possible. Instead, glasses with isotropic orientational order are heated to a temperature T, and the relaxation times by which nematic orientational order develops are determined. These relaxation times appear to diverge at a critical density rho(c); i.e., the system can equilibrate at rhorho(c) (at the temperature T). The relaxation times follow a power-law scaling as the critical density is approached, suggesting that this density-driven glass transition concurs with mode coupling theory.  相似文献   

8.
The behavior of individual spherulites on uniform deformation of bulk polyethylene is studied with a model consisting of a spherical spherulite and a homogeneous matrix having the properties of the polymer. On the basis of this model, the nonaffine or inhomogeneous deformation in the spherulite is found to be primarily due to the curvilinearly anisotropic property or, more specifically, the spherically isotropic property of the spherulite. In the case of uniaxial stretching, mechanical interactions between spherulites are also to some extent responsible for the microinhomogeneous deformation. Details of the predicted deformation mode are compared with experimental observations reported in the literature and reasonable agreement is attained between theory and experiment for lightly drawn samples.  相似文献   

9.
Anisotropic NMR has gained increasing popularity to determine the structure and specifically the configuration of small, flexible, non‐crystallizable molecules. However, it suffers from the necessity to dissolve the analyte in special media such as liquid crystals or polymer gels. Generally, small degrees of alignment are also caused by an anisotropic magnetic susceptibility of the molecule, for example, induced by aromatic moieties. For this mechanism, the alignment can be predicted via density functional theory. Here we show that both residual dipolar couplings and residual chemical shift anisotropies can be acquired from natural products without special sample preparation using magnetically induced alignment. On the two examples of the novel natural product gymnochrome G and the alkaloid strychnine, these data, together with the predicted alignment, yield the correct configuration with high certainty.  相似文献   

10.
Naive mode coupling theory (NMCT) and the nonlinear stochastic Langevin equation theory of activated dynamics have been generalized to mixtures of spherical particles. Two types of ideal nonergodicity transitions are predicted corresponding to localization of both, or only one, species. The NMCT transition signals a dynamical crossover to activated barrier hopping dynamics. For binary mixtures of equal diameter hard and attractive spheres, a mixture composition sensitive "glass-melting" type of phenomenon is predicted at high total packing fractions and weak attractions. As the total packing fraction decreases, a transition to partial localization occurs corresponding to the coexistence of a tightly localized sticky species in a gel-like state with a fluid of hard spheres. Complex behavior of the localization lengths and shear moduli exist because of the competition between excluded volume caging forces and attraction-induced physical bond formation between sticky particles. Beyond the NMCT transition, a two-dimensional nonequilibrium free energy surface emerges, which quantifies cooperative activated motions. The barrier locations and heights are sensitive to the relative amplitude of the cooperative displacements of the different species.  相似文献   

11.
We have recently proposed [D. Cangialosi et al., J. Chem. Phys. 123, 144908 (2005)] an extension of the Adam-Gibbs [J. Chem. Phys. 43, 139 (1965)] theory, combined with the concept of self-concentration, to describe the temperature dependence of the relaxation time for the component segmental dynamics in miscible polymer blends. Thus, we were able to obtain the dynamics of each component in the blend starting from the knowledge of the dynamic and thermodynamic data of the pure polymers, with a single fitting parameter (alpha) which had to be obtained from the fitting of the experimental data. In the present work we demonstrate that this model is also suitable to describe the polymer segmental dynamics in concentrated polymer solutions. From this result we have developed a new route for determining the value of the alpha parameter associated with any given polymer. Once this value is known for the two components of a possible polymer blend, our model for polymer blends dynamics becomes fully predictive.  相似文献   

12.
采用退火 (Annealing)MonteCarlo方法 ,从高温到低温顺序模拟了简立方格点上考虑最近邻Ising相互作用的磁性高分子链在不同温度的磁性质和构象性质 .磁性高分子链在低温下存在自发磁矩 ,无限长链的临界温度Tc=1 77± 0 0 5J kB.在临界温度附近 ,高分子链经历了从伸展的无规线团到紧缩球体的塌缩相变 .对链的尺寸、形状、近邻数及能量的分析表明 ,高分子链的构象性质从温度Tc=1 77开始发生较明显的变化 ,这表明高分子Ising链的相变是Ising相互作用和链节运动协同作用的结果 .  相似文献   

13.
The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, nai?ve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.  相似文献   

14.
We use 2H NMR stimulated-echo spectroscopy to measure two-time correlation functions characterizing the polymer segmental motion in polymer electrolytes PPO-LiClO4 near the glass transition temperature Tg. To investigate effects of the salt on the polymer dynamics, we compare results for different ether oxygen to lithium ratios, namely, 6:1, 15:1, 30:1, and infinity. For all compositions, we find nonexponential correlation functions, which can be described by a Kohlrausch function. The mean correlation times show quantitatively that an increase of the salt concentration results in a strong slowing down of the segmental motion. Consistently, for the high 6:1 salt concentration, a high apparent activation energy Ea=4.1 eV characterizes the temperature dependence of the mean correlation times at Tg相似文献   

15.
The dynamics of cis-1,4-polybutadiene (cis-1,4-PB) over a wide range of temperature and pressure conditions is explored by conducting atomistic molecular dynamics (MD) simulations with a united atom model on a 32-chain C128 cis-1,4-PB system. The local or segmental dynamics is analyzed in terms of the dipole moment time autocorrelation function (DACF) of the simulated polymer and its temperature and pressure variations, for temperatures as low as 195 K and pressures as high as 3 kbars. By Fourier transforming the DACF, the dielectric spectrum, epsilon* = epsilon' + i epsilon" = epsilon*omega, is computed and the normalized epsilon"/epsilon(max)" vs omega/omega(max) plot is analyzed on the basis of the time-temperature and time-pressure superposition principles. The relative contribution of thermal energy and volume to the segmental and chain relaxation processes are also calculated and evaluated in terms of the ratio of the activation energy at constant volume to the activation energy at constant pressure, Q(V)/Q(P). Additional results for the temperature and pressure dependences of the Rouse times describing terminal relaxation in the two polymers show that, in the regime of the temperature and pressure conditions covered here, segmental and chain relaxations are influenced similarly by the pressure and temperature variations. This is in contrast to what is measured experimentally [see, e.g., G. Floudas and T. Reisinger, J. Chem. Phys. 111, 5201 (1999); C. M. Roland et al.,J. Polym. Sci. Part B, 41, 3047 (2003)] for other, chemically more complex polymers that pressure has a stronger influence on the dynamics of segmental mode than on the dynamics of the longest normal mode, at least for the regime of temperature and pressure conditions covered in the present MD simulations.  相似文献   

16.
Nuclear magnetic resonance spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. (1)H and (7)Li spin-lattice relaxation times (T(1)) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T(1) values along with the presence of minima in T(1) as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and quasi-elastic neutron scattering experiments.  相似文献   

17.
We investigate ion and polymer dynamics in polymer electrolytes PPO-LiClO4 performing 2H and 7Li NMR line-shape analysis. Comparison of temperature dependent 7Li and 2H NMR spectra gives evidence for a coupling of ion and polymer dynamics. 2H NMR spectra for various salt concentrations reveal a strong slowdown of the polymer segmental motion when the salt content is increased. The 2H NMR line shape further indicates that the segmental motion is governed by dynamical heterogeneities. While the width of the distribution of correlation times G(log tau) is moderate for low and high salt content, an extremely broad distribution exists for an intermediate salt concentration of 15:1 PPO-LiClO4. For the latter composition, a weighted superposition of two spectral components, reflecting the fast and the slow polymer segments of the distribution, describes the 2H NMR line shape over a broad temperature range. Analysis of the temperature dependent relative intensity of both spectral components indicates the existence of a continuous rather than a discontinuous distribution G(log tau). Such continuous distribution is consistent with gradual fluctuations of the local salt concentration and, hence, of the local environments of the polymer segments, whereas it is at variance with the existence of large salt-depleted and salt-rich domains featuring fast and slow polymer dynamics, respectively. Finally, for all studied PPO-LiClO4 mixtures, the 2H NMR line shape strongly depends on the echo delay in the applied echo-pulse sequence, indicating that the structural relaxation of the polymer segments involves successive rotational jumps about small angles gamma < 20 degrees .  相似文献   

18.
A comparative study of anisotropic relaxation in two-pulse primary and three-pulse stimulated electron spin echo decays provides a direct way to distinguish fast (correlation time tau(c)<10(-6) s) and slow (tau(c)>10(-6) s) motions. Anisotropic relaxation is detected as a difference of the decay rates for different resonance field positions in anisotropic electron paramagnetic resonance spectra. For fast motion anisotropic relaxation influences the primary echo decay and does not influence the stimulated echo decay. For slow motion it is seen in both two-pulse echo and three-pulse stimulated echo decays. For nitroxide spin probes dissolved in glassy glycerol only fast motion was found below 200 K. Increase of temperature above 200 K results in the appearance of slow motion. Its amplitude increases rapidly with temperature increase. While in glycerol glass slow motion appears above glass transition temperature T(g), in ethanol glass it is observable below T(g). The scenario of motional dynamics in glasses is proposed which involves the broadening of the correlation time distribution with increasing temperature.  相似文献   

19.
Neutron Reflection (NR) and Dynamic Secondary Ion Mass Spectroscopy (DSIMS) experiments were conducted on symmetrically deuterated polystyrene triblock bilayers (HDH/DHD) which directly probed the interdiffusion dynamics of the chains during welding. The HDH chains had their centers deuterated 50%, the DHD chains had their ends deuterated (25% at each end) such that each chain contained approximately 50% D. During welding, anisotropic motion of the chains produces a time-dependent oscillation (ripple) in the H and D concentration at the interface, which bears the characteristic signature of the polymer dynamics. These oscillations were compared with those predicted by Rouse, polymer mode coupling (PMC), and reptation dynamics. The following conclusions can be made from this study. (a) During the interdiffusion of high molecular weight HDH/DHD pairs, higher mobility of the chain ends caused a concentration oscillation which increased to a maximum amplitude, and eventually vanished at times, t > τD. The amplitude, or excess enrichment found, was appreciably more than that predicted by Rouse and PMC simulations, and was only slightly less than that predicted from reptation simulations. (b) The oscillations were completely missing in the 30 and 50K HDH/DHD polymers, which are only weakly entangled. The lack of oscillations for the 30 and 50K pairs may be due to a combination of surface roughness and fluctuations of order 30 Å. (c) It was found that the position of the maximum in this ripple stayed at the interface during its growth. This is also consistent with reptation and has not been explained by other theories. (d) All dynamics models for linear polymers produce ripples, many of which are qualitatively similar to that predicted for reptation. However, each ripple bears the fingerprint of the dynamics in terms of its time-dependent shape, position, and magnitude, and the models are clearly distinguishable. Our results, in summary, support reptation as a candidate mechanism of interdiffusion at polymer(SINGLEBOND) polymer interfaces and its uniqueness is being further pursued. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
对非晶态聚对苯二甲酸乙二酯膜片经在Tg以上单轴拉伸然后淬冷至室温的试样,其物理性质的各向同性或各向异性进行了研究.实验结果说明这种分子链大尺度高度取向而小尺度接近无规取向的非晶态(GOLR态)其折光指数和小形变的拉伸模量是接近各向同性的,而热导率和微波介电常数很可能是各向异性的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号