首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substantial progress has been made in the quantitative understanding and interpretation of the hydrogen bonding and ordering structure of the air/water interface since the first sum-frequency generation vibrational spectroscopy (SFG-VS) measurement by Q. Du et al. in 1993 (Phys. Rev. Lett. 1993, 70, 2312-2316). However, there are still disagreements and controversies on the consistency between the different experimental measurements, as well as in the theoretical and computational results. One critical problem lies in the lack of consistency between the SFG-VS intensity measurements and the recently developed SFG-VS phase spectra measurements of the neat air/water interface, which has inspired various theoretical efforts. In this report, the reliability of the SFG-VS intensity spectra of the air/neat water interface is to be quantitatively examined, and possible sources of inaccuracies in the SFG-VS phase spectral measurement are to be discussed based on the nonresonant SHG phase measurements. Solid evidence is shown indicating that the SFG-VS intensity spectra from different laboratories are now quantitatively converging and in agreement with each other. However, the possible inaccuracies and inconsistencies in the SFG-VS phase spectra measurements need to be carefully examined against a properly corrected phase standard to take full advantage of this powerful experimental tool.  相似文献   

2.
Specific ion effects on the nonlinear optical response from the water molecules at the air/sodium halide solution interfaces are measured using non-resonant surface second harmonic generation (SHG). Procedures have been developed to monitor and remove the impurities in the salt solution samples to ensure measurement of small changes in the SHG signal. Quantitative polarization analysis of the measured SHG data indicated that the average orientation of the interfacial water molecules changed only slightly around 40 degrees with the increase of the bulk concentration of the three sodium halides, namely NaF, NaCl and NaBr, from that of the neat air/water interface. The observed significant SHG signal increase with the bulk salt concentration is attributed to the overall increase of the thickness of the interfacial water molecular layer, following the order of NaBr > NaCl approximately NaF. The absence of the electric-field-induced SHG (EFISHG) effect indicated that the electric double layer at the salt aqueous solution interface is much weaker than that predicted from the molecular dynamics (MD) simulations. These results provided quantitative data to the specific anion effects on the interfacial water molecules of the electrolyte aqueous solution, not only for the larger and more polarizable Br(-) anion, but also for the smaller and less polarizable F(-) and Cl(-) anions.  相似文献   

3.
Vapor/methanol and vapor/methanol-water mixture interfaces have been among the benchmark liquid interfaces under extensive experimental and theoretical investigation. In this report, we studied the orientation, structure and energetics of the vapor/methanol-water interface with newly developed techniques in sum frequency generation vibrational spectroscopy (SFG-VS). Different from the interpretations in previous SFG-VS studies for a more disordered interface at higher bulk methanol concentrations, we found that the methanol-water mixture interface is well ordered in the whole concentration region. We are able to do so because direct polarization null angle (PNA) measurement allowed us to accurately determine the CH3 orientation at the interface and to separate the orientational and interface density contributions to the SFG-VS signal. We found that the CH3 groups at the interface pointed out almost perpendicularly from the interface. We further found that this well-ordered vapor/methanol-water mixture interface has an antiparallel structure. With the double layer adsorption model (DAM) and Langmuir isotherm, the adsorption free energies for the first and second layer are obtained as -1.7 +/- 0.1 kcal/mol and 0.5 +/- 0.4 kcal/mol, respectively. Therefore, the second layer adsorption is slightly negative, and this means that replacement of the second layer water molecule with methanol molecule is energetically unfavorable. Comparing this interface with the vapor/acetone-water mixture interface reported previously, we are able to correlate the second layer adsorption free energy with the work of self-association using the pairwise self- and mutual interaction energies between the water and solute molecules. These results provided detailed microscopic structural evidences for understanding of liquid interfaces.  相似文献   

4.
Here we report a detailed study on spectroscopy, structure, and orientational distribution, as well as orientational motion, of water molecules at the air/water interface, investigated with sum frequency generation vibrational spectroscopy (SFG-VS). Quantitative polarization and experimental configuration analyses of the SFG data in different polarizations with four sets of experimental configurations can shed new light on our present understanding of the air/water interface. Firstly, we concluded that the orientational motion of the interfacial water molecules can only be in a limited angular range, instead of rapidly varying over a broad angular range in the vibrational relaxation time as suggested previously. Secondly, because different vibrational modes of different molecular species at the interface has different symmetry properties, polarization and symmetry analyses of the SFG-VS spectral features can help the assignment of the SFG-VS spectra peaks to different interfacial species. These analyses concluded that the narrow 3693 cm(-1) and broad 3550 cm(-1) peaks belong to C(infinityv) symmetry, while the broad 3250 and 3450 cm(-1) peaks belong to the symmetric stretching modes with C2v symmetry. Thus, the 3693 cm(-1) peak is assigned to the free OH, the 3550 cm(-1) peak is assigned to the singly hydrogen-bonded OH stretching mode, and the 3250 and 3450 cm(-1) peaks are assigned to interfacial water molecules as two hydrogen donors for hydrogen bonding (with C2v symmetry), respectively. Thirdly, analysis of the SFG-VS spectra concluded that the singly hydrogen-bonded water molecules at the air/water interface have their dipole vector directed almost parallel to the interface and is with a very narrow orientational distribution. The doubly hydrogen-bonded donor water molecules have their dipole vector pointing away from the liquid phase.  相似文献   

5.
As one of the most primitive nonlinear optical phenomena, optical second harmonic genera-tion (SHG) has been investigated for half a century and it has become a very useful spectroscopic tool in the study of surface and interface[1—3]. It was theoretically shown that the SH signal cannot be generated in a centrosymmetric system. However, the generation of SH signal from the centro-symmetric molecules such as fullerene (C60) and CuPc has been detected[4—7]. In our recent ex-periments, an …  相似文献   

6.
Second harmonic generation (SHG) has emerged as one of the most powerful techniques used to selectively monitor surface dynamics and reactions for all types of interfaces as well as for imaging non-centrosymmetric structures, although the molecular origin of the SHG signal is still poorly understood. Here, we present a breakthrough approach to predict and interpret the SHG signal at the atomic level, which is freed from the hyperpolarisability concept and self-consistently considers the non-locality and the coupling with the environment. The direct ab initio method developed here shows that a bulk quadrupole contribution significantly overwhelms the interface dipole term in the purely interfacial induced second-order polarisation for water/air interfaces. The obtained simulated SHG responses are in unprecedented agreement with the experimental signal. This work not only paves the road for the prediction of SHG response from more complex interfaces of all types, but also suggests new insights in the interpretation of the SHG signal at a molecular level. In particular, it highlights the modest influence of the molecular orientation and the high significance of the bulk quadrupole contribution, which does not depend on the interface, in the total experimental response.

Second harmonic generation is one of the most powerful techniques used to selectively probe interfaces of all types. The direct ab initio method developed here allows predicting the signal and highlights the importance of local and non-local effects.  相似文献   

7.
Knowledge of the ratios between different polarizability betai'j'k' tensor elements of a chemical group in a molecule is crucial for quantitative interpretation and polarization analysis of its sum frequency generation vibrational spectroscopy (SFG-VS) spectrum at interface. The bond additivity model (BAM) or the hyperpolarizability derivative model along with experimentally obtained Raman depolarization ratios has been widely used to obtain such tensor ratios for the CH3, CH2, and CH groups. Successfully, such treatment can quantitatively reproduce the intensity polarization dependence in SFG-VS spectra for the symmetric (SS) and asymmetric (AS) stretching modes of CH3 and CH2 groups, respectively. However, the relative intensities between the SS and AS modes usually do not agree with each other within this model even for some of the simplest molecular systems, such as the air/methanol interface. This fact certainly has cast uncertainties on the effectiveness and conclusions based on the BAM. One of such examples is that the AS mode of CH3 group has never been observed in SFG-VS spectra from the air/methanol interface, while this AS mode is usually very strong for SFG-VS spectra from the air/ethanol interface, other short chain alcohol, as well as long chain surfactants. In order to answer these questions, an empirical approach from known Raman and IR spectra is used to make corrections to the BAM. With the corrected ratios between the betai'j'k' tensor elements of the SS and AS modes, all features in the SFG-VS spectra of the air/methanol and air/ethanol interfaces can be quantitatively interpreted. This empirical approach not only provides new understandings of the effectiveness and limitations of the bond additivity model but also provides a practical way for its application in SFG-VS studies of molecular interfaces.  相似文献   

8.
The orientation angle is an important parameter that reflects the structure of molecules at interfaces. In order to obtain this parameter, second order nonlinear spectroscopic techniques including second harmonic generation (SHG) and sum frequency generation-vibrational spectroscopy (SFG-VS) have been successfully applied through analysis of the nonlinear signal from various polarizations. In some SHG and SFG-VS experiments, total internal reflection (TIR) configuration has been adopted to get enhanced signals. However, the reports on the detailed procedure of the polarization analysis and the calculation of the orientation angle of interfacial molecules under TIR configuration are still very few. In this paper, we measured the orientation angles of two molecules at the hexadecane-water interface under TIR and Non-TIR experimental configurations. The results measured from polarization analysis in TIR configuration consist with those obtained from Non-TIR configuration. This work demonstrates the feasibility and accuracy of polarization analysis in the determination of the orientation angle of molecules at the interfaces under TIR-SHG configuration.  相似文献   

9.
Second harmonic generation (SHG) has been proven a uniquely effective technique in the investigation of molecular structure and conformations, as well as dynamics of molecular interfaces. The ability to apply SHG to molecular interface studies depends on the ability to abstract quantitative information from the measurable quantities in the actual SHG experiments. In this review, we try to assess recent developments in the SHG experimental methodologies towards quantitative analysis of the nonlinear optical properties of the achiral molecular interfaces with rotational isotropy along the interface normal. These developments include the methodology for orientational analysis of the SHG experimental data, the experimental approaches for more accurate SHG measurements, and a novel treatment of the symmetry properties of the molecular polarizability tensors in association with the experimentally measurable quantities. In the end, the recent developments on the problem of surface versus bulk contribution in SHG surface studies is discussed. These developments can put SHG on a more solid foundation for molecular interface studies, and to pave the way for better understanding and application of SHG surface studies in general.  相似文献   

10.
Two achiral porphyrin derivatives, 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine (TPPOMe) and 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (TPPOH), were spread onto an air/water interface. The spreading films were transferred onto solid substrates by the Langmuir-Schaefer (LS) method. Although both of the porphyrin derivatives are achiral species, the transferred LS multilayer films shows macroscopic supramolecular chirality, which is suggested to be due to the spontaneous symmetry breaking that occurs at the air/water interface. A strong CD signal is observed from the as-deposited TPPOH LS film, while a relatively weak CD signal is detected from that of TPPOMe. Interestingly, when the TPPOMe LS film was annealed in high vacuum, a significant amplification of the supramolecular chirality is observed. Atomic force microscopy observations confirm that TPPOMe form more ordered aggregates upon annealing. It is suggested that the small amount of chiral assemblies formed in the as-deposited LS film grow into larger ones following the "sergeants and soldiers" principle during the annealing process.  相似文献   

11.
The orientation, structure, and energetics of the vapor/acetone-water interface are studied with sum frequency generation vibrational spectroscopy (SFG-VS). We used the polarization null angle (PNA) method in SFG-VS to accurately determine the interfacial acetone molecule orientation, and we found that the acetone molecule has its C=O group pointing into bulk phase, one CH3 group pointing up from the bulk, and the other CH3 group pointing into the bulk phase. This well-ordered interface layer induces an antiparallel structure in the second layer through dimer formation from either dipolar or hydrogen bond interactions. With a double-layer adsorption model (DAM) and Langmuir isotherm, the adsorption free energies for the first and second layer are determined as deltaG degrees (ads,1) = - 1.9 +/- 0.2 kcal /mol and deltaG degrees (ads,2) = - 0.9 +/- 0.2 kcal /mol, respectively. Since deltaG degrees (ads,1) is much larger than the thermal energy kT = 0.59 kcal /mol, and deltaG degrees (ads,2) is close to kT, the second layer has to be less ordered. Without either strong dipolar or hydrogen bonding interactions between the second and the third layer, the third layer should be randomly thermalized as in the bulk liquid. Therefore, the thickness of the interface is not more than two layers thick. These results are consistent with previous MD simulations for the vapor/pure acetone interface, and undoubtedly provide direct microscopic structural evidences and new insight for the understanding of liquid and liquid mixture interfaces. The experimental techniques and quantitative analysis methodology used for detailed measurement of the liquid mixture interfaces in this report can also be applied to liquid interfaces, as well as other molecular interfaces in general.  相似文献   

12.
The salt effects on molecular orientation at air/liquid methanol interface were investigated by the polarization-dependent sum frequency generation vibrational spectroscopy(SFG-VS). We clarified that the average tilting angle of the methyl group to be u = 308 58 at the air/pure methanol surface assuming a d-function orientational distribution. Upon the addition of 3 mol/L Na I, the methyl group tilts further away from the surface normal with a new u = 418 38. This orientational change does not explain the enhancement of the SFG-VS intensities when adding Na I, implying the number density of the methanol molecules with a net polar ordering in the surface region also changed with the Na I concentrations. These spectroscopic findings shed new light on the salt effects on the surfaces structures of the polar organic solutions. It was also shown that the accurate determination of the bulk refractive indices and Raman depolarization ratios for different salt concentrations is crucial to quantitatively interpret the SFG-VS data.  相似文献   

13.
Surface second harmonic generation (SHG) phase measurements are carried out on methyl ester-functionalized fused quartz/water interfaces in the presence and absence of Cr(VI). The experiments are performed at pH 7, room temperature, and a chromate concentration of 10(-4) M, which corresponds to monolayer Cr(VI) coverage. The liquid/solid interface is probed from the fused quartz side by directing the probe light field at 580 nm onto the interface together with an SHG reference signal at 290 nm that is collinear with the fundamental. The phase difference of the SHG signals generated at the interface in the presence and absence of Cr(VI) is 85 degrees, which is consistent with SHG resonance enhancement observed for the surface-bound Cr(VI) near 290 nm. The optical arrangement discussed here does not require vacuum technology or optics that compensate for the dispersion of the fundamental and the second harmonic E-fields in the two condensed-phase media. This approach is general and can be applied for analyzing thermodynamic and kinetic data derived from SHG measurements of physical and chemical processes occurring at any buried interface.  相似文献   

14.
The results of theoretical and experimental studies of spontaneous nonlinear oscillations produced at the liquid/liquid interface by surfactant transfer from a point source situated in one of the bulk phases are presented. The theoretical analysis is based on the direct numerical simulation of the system evolution. The experiments are performed for the heptane/water interface using middle-chain aliphatic alcohols as surfactants. The results for the oil/water interface are compared with the corresponding data obtained for the air/water interface. The presented results allow the conclusion that auto-oscillations at the air/liquid and liquid/liquid interfaces are governed by very similar mechanisms but their characteristics are strongly dependent on the properties of the two contacting media, in particular, on the surfactant partition coefficient.  相似文献   

15.
Molecular features of the air/carbonate solution interface   总被引:1,自引:0,他引:1  
The nature of the air/carbonate solution interface is considered with respect to water structure by sum-frequency vibrational spectroscopy (SFVS) and molecular dynamics simulations (MDS). Results from this study provide further understating regarding previous observations that the surface tensions of structure making sodium carbonate solutions have been shown to be significantly greater than the surface tensions of structure breaking bicarbonate solutions at equivalent concentrations. This difference in surface tension and its variation with salt concentration is related to the organization of water and ions at the air/solution interface. Spectral results from SFVS show at equivalent concentrations that, for the carbonate solution, the strong water structure signal of 3200 cm(-1) at the air/carbonate solution interface is increased by a factor of 4 when compared to the same signal for the air/bicarbonate solution interface, which spectrum is weaker than the spectrum for the air/water interface in the absence of salt. These results from SFVS are explained by the results from MDS which show that in the case of carbonate solutions the structure making carbonate ions are excluded from the interfacial water region which region is extended in depth. On the other hand, in the case of bicarbonate solutions, the bicarbonate ions are accommodated in the interfacial water region and there is no evidence of an increase in the extent of water structure. These SFVS experimental and MD simulation results provide further information to understand interfacial phenomena of soluble salts at the molecular level.  相似文献   

16.
We study an electric quadrupole contribution to sum frequency generation (SFG) at air∕liquid interfaces in an electronically and vibrationally nonresonant condition. Heterodyne-detected electronic sum frequency generation spectroscopy of air∕liquid interfaces reveals that nonresonant χ((2)) (second-order nonlinear susceptibility) has a negative sign and nearly the same value for all eight liquids studied. This result is rationalized on the basis of the theoretical expressions of χ((2)) with an electric quadrupole contribution taken into account. It is concluded that the nonresonant background of SFG is predominantly due to interfacial nonlinear polarization having a quadrupole contribution. Although this nonlinear polarization is localized at the interface, it depends on quadrupolar χ((2)) in the bulk as well as that at the interface. It means that the sign of nonresonant χ((2)) bears no relation to the "up" versus "down" alignment of interfacial molecules, because nonresonant χ((2)) has a quadrupolar origin.  相似文献   

17.
The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.  相似文献   

18.
A single protruding chain at a sharp discontinuity of the quality of the surrounding medium was shown by Monte Carlo (MC) simulations to be a good model representing semiquantitatively the major macroscopic features of polymer interfaces such as the interface thickness. This is in accord with early original theoretical suggestions. Compared to multichain simulations of a polymer/polymer interface it is clear that the protruding chain is not completely adequate to represent a diffuse multichain interface. The results on a protruding chain, however, indicate the proper interfacial thickness as obtained by MC simulations in multichain systems. The microscopic results (such as deformation, orientation of coils at the interface and chain end segregation into the interface) are similar to those obtained in multichain polymer interfaces. None of the investigated interface properties exhibits a dependence on the total chain length of the protruding chain.  相似文献   

19.
Fluorescence correlation spectroscopy was applied to study the diffusion of isolated surface-active molecules at air/water interfaces. Rhodamine 6G was used as a surface-active fluorescent tracer. Results show that the diffusion coefficient of the Rhodamine 6G at the interface is about 2.5 times higher than in the bulk. Effects of Rhodamine 6G concentration and added SDS or CTAB surfactants have been studied. Diffusion of Rhodamine 6G at the interface is slowed down at surfactant concentration corresponding to a mean distance between molecules of 10 and 40 nm, indicating a long-range interaction.  相似文献   

20.
Classical molecular dynamics simulations have been performed to investigate the interface between liquid water and methane gas under methane hydrate forming conditions. The local environments of the water molecules were studied using order parameters which distinguish between liquid water, ice and methane hydrate phases. Bulk water and water/air interfaces were also studied to allow comparisons to be made between water molecules in the different environments and to determine the effects of the different methane densities studied. Good agreement between experimental and calculated surface tensions is obtained if long range corrections are included. The water surface is found to have a structure which is very similar to that of bulk water, but more tetrahedral, and more clathrate-like than ice-like. In these simulations the concentration of methane in water at the interface is shown to be appropriate for clathrates at higher gas densities (pressures). The orientation of water molecules around methane molecules in the interfacial region appears to depend only weakly on pressure and one of the difficulties in forming hydrate is the availability of water molecules tangential to the hydrate cage. At the interface, the water structure is more disordered than in the bulk water region with increased occurrence compared with the bulk of those angles and orientations found in the clathrate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号