首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency-dependent dielectric constant, shear and adiabatic bulk moduli, longitudinal thermal expansion coefficient, and longitudinal specific heat have been measured for two van der Waals glass-forming liquids, tetramethyl-tetraphenyl-trisiloxane (DC704) and 5-polyphenyl-4-ether. Within the experimental uncertainties the loss-peak frequencies of the measured response functions have identical temperature dependence over a range of temperatures, for which the Maxwell relaxation time varies more than nine orders of magnitude. The time scales are ordered from fastest to slowest as follows: Shear modulus, adiabatic bulk modulus, dielectric constant, longitudinal thermal expansion coefficient, and longitudinal specific heat. The ordering is discussed in light of the recent conjecture that van der Waals liquids are strongly correlating, i.e., approximate single-parameter liquids.  相似文献   

2.
The experimentally observed characteristic features of the alpha-relaxation process in glass-forming liquids are the non-Arrhenius behavior of the structural relaxation times and the non-Debye character of the macroscopic relaxation function. The Avramov model in which relaxation is considered as an energy activation process of surmounting random barriers in liquid energy landscape was successfully applied to describe the temperature and pressure dependences of the macroscopic relaxation times or viscosity. In this paper, we consider the dielectric spectrum associated with Avramov model. The asymmetrical broadening of the loss spectra was found to be related directly to dispersion of the energy barrier distribution. However, it turns out that temperature dependence of the spectrum broadening as predicted by the Avromov model is at odds to experimental observation in glass-forming liquids.  相似文献   

3.
The connection between the dielectric and calorimetric relaxation behaviours of synthetic polyisoprene Cariflex IR 305 is studied. A similar comparison of dielectric and dilatometric results was described in [1]. The heat capacity was measured during heating of samples prepared with different thermal history. Experimental results were compared with the heat capacity curves calculated for a model based on the multiparameter theory of Kovacs et al. [4]. The model considers the relaxation system as being composed of a set of subsystems characterized by different relaxation times. The distribution of relaxation times and their temperature dependence were taken from the diclectric measurement. The relaxation time of a subsystem from posed to depend, not only on the actual, temperature of the sample, but also on the deviation of this subsystem from equilibrium, or alternatively, on the deviation of the system as a whole. The comparison between the measured and modeled curves shows that both influences must be taken into account in order to explain the experimental results.Dedicated to Prof. Dr. W. Pechhold on the occasion of his 60th birthday.  相似文献   

4.
We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 diffusion pump fluid), polyphenyl ether (Santovac 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under identical thermal conditions close to the glass transition temperature. The liquids span four orders of magnitude in dielectric relaxation strength and include liquids with and without Johari-Goldstein beta relaxation. The shear mechanical data are obtained by the piezoelectric shear modulus gauge method giving a large frequency span (10(-3)-10(4.5) Hz). This allows us to resolve the shear mechanical Johari-Goldstein beta peak in the equilibrium DHIQ liquid. We moreover report a signature (a pronounced rise in the shear mechanical loss at frequencies above the alpha relaxation) of a Johari-Goldstein beta relaxation in the shear mechanical spectra for all the liquids which show a beta relaxation in the dielectric spectrum. It is found that both the alpha and beta loss peaks are shifted to higher frequencies in the shear mechanical spectrum compared to the dielectric spectrum. It is in both the shear and dielectric responses found that liquids obeying time-temperature superposition also have a high-frequency power law with exponent close to -12. It is moreover seen that the less temperature dependent the spectral shape is, the closer it is to the universal -12 power-law behavior. The deviation from this universal power-law behavior and the temperature dependencies of the spectral shape are rationalized as coming from interactions between the alpha and beta relaxations.  相似文献   

5.
Extended Fokker-Planck (FP) equations are generalized stochastic equations which describe the evolution of a set of coordinates, loosely referred to as solute, coupled with a relevant set of solvent variables. They are useful for the analysis of molecular dynamics in liquids, when a time-scale separation between probe motions and relaxation times of interactions with surroundings particles cannot be performed, because of persistence of slowly fluctuating components. In this article, we focus attention on a model system, made up of an angular coordinate and its conjugate momentum, submitted to a bistable potential, and coupled to a dissipative harmonic mode, to investigate the influence of polar solvents on reactive dynamics. The results are appropriate to describe dielectric effects, solvent-controlled conformational changes involving charge transfer which occur in photophysical processes, and the dynamic Stokes shifts observed in time-resolved fluorescence experiments. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Liquid-phase methods (an oxalate process in aqueous solution and a semialkoxide sol-gel process in anhydrous acetic acid) were used to prepare barium acetatotitanyl (BAT) and barium oxalatotitanyl (BOT), which are potential fillers for electrorheological liquids, and to prepare barium titanate during heat treatment of the aforementioned intermediates at 1200°C. The materials were characterized using electron microscopy, FTIR spectroscopy, and thermal analysis. The particle size was 80 to 100 nm for BAT powders and 20 to 50 nm for BOT powders. X-ray spectra of the powders dried at 120°C contain reflections from a barium titanate phase. The dielectric spectra of the materials synthesized were studied for suspensions in PMS-20 silicone oil over the frequency range from 25 to 106 Hz up to 4 kV/mm. The dielectric parameters of BOT suspensions decrease hyperbolically with rising alternate current frequency, whereas BAT suspensions give rise to a relaxation dielectric spectrum with relaxation times on the order of 10−3 s.  相似文献   

7.
It has been shown over the past ten years that the dynamics close to the glass transition is strongly heterogeneous: fast domains coexist with domains three or four decades slower, the size of these regions being about 3 nm at T(g). The authors extend here a model that has been proposed recently for the glass transition in van der Waals liquids. The authors describe in more details the mechanisms of the alpha relaxation in such liquids. It allows then to interpret physical ageing in van der Waals liquids as the evolution of the density fluctuation distribution towards the equilibrium one. The authors derive the expression of macroscopic quantities (volume, compliance, etc.). Numerical results are compared with experimental data (shape, times to reach equilibrium) for simple thermal histories (quenches, annealings). The authors explain the existence of a "Kovacs memory effect" and the temporal asymmetry between down jump and up jump temperatures experiments, even for systems for which there is no energy barriers. Their model allows also for calculating the evolution of small probe diffusion coefficients during ageing.  相似文献   

8.
Aging to the equilibrium liquid state of organic glasses is studied. The glasses were prepared by cooling the liquid to temperatures just below the glass transition. Aging following a temperature jump was studied by measuring the dielectric loss at a fixed frequency using a microregulator in which temperature is controlled by means of a Peltier element. Compared to conventional equipment, the new device adds almost two orders of magnitude to the span of observable aging times. Data for the following five glass-forming liquids are presented: dibutyl phthalate, diethyl phthalate, 2,3-epoxy propyl-phenyl-ether, 5-polyphenyl-ether, and triphenyl phosphite. The aging data were analyzed using the Tool-Narayanaswamy formalism. The following features are found for all five liquids: (1) The liquid has an "internal clock," a fact that is established by showing that aging is controlled by the same material time that controls the dielectric properties. (2) There are no so-called expansion gaps between the long-time limits of the relaxation rates following up and down jumps to the same temperature. (3) At long times, the structural relaxation appears to follow a simple exponential decay. (4) For small temperature steps, the rate of the long-time exponential structural relaxation is identical to that of the long-time decay of the dipole autocorrelation function.  相似文献   

9.
Complex dielectric spectra of ethylene glycol and of various derivatives as well as of mixtures of water with an ethylene glycol oligomer and with a poly(ethylene glycol) dimethyl ether oligomer have been measured. The spectra can be well represented by a Cole-Cole [Cole and Cole, J. Chem. Phys. 9, 341 (1941)] spectral function. The extrapolated low frequency (static) permittivity of this function has been evaluated to yield the effective dipole orientation correlation factor of the liquids. The relaxation time of the ethylene glycols displays a characteristic dependence upon the ratio of concentrations of hydrogen bond donating and accepting groups, indicating two opposing effects. With increasing availability of hydrogen bonding sites effects of association and also of dynamical destabilization increase. Both effects exist also in the mixture of water with the oligomers. They are discussed in terms of a wait-and-switch model of dipole reorientation in associating liquids. Another feature in the dependence of the dielectric relaxation time of poly(ethylene glycol)/water mixtures upon mixture composition has been tentatively assigned to precritical demixing behavior of the binary liquids in some temperature range.  相似文献   

10.
Abstract

Equilibrium molecular dynamics computer simulations have been used to determine the transport coefficients of model Ar—Kr mixtures, which are represented by Lennard-Jones pair potentials with Lorentz—Berthelot rules for the cross-species interactions. The component self-diffusion and mutual-diffusion coefficients are calculated from time correlation functions and mean square displacements. Time correlation functions are used to evaluate the shear and bulk viscosity, thermal conductivity and the thermal diffusion coefficient (Soret/Dufour coefficient). In the case of the thermal transport coefficients, the partial enthalpy of the two species is required at each state point to define the heat flux rigorously. We obtain this and the partial volume (and species resolved chemical potential) using particle-exchange (and particle insertion) techniques implemented in separate [NPT] simulations at the same state point.

The viscoelasticity of the fluids is characterised by the relaxation times for bulk and shear stress relaxation. The results are for dense liquids close to the triple point temperature and density. Agreement with experiment and previous simulation is particularly good for the density of the mixtures, the shear modulus, shear viscosity, shear stress relaxation time and thermal conductivity. As for the single component noble gas fluids (simulated and experiment) there is a significant qualitative difference in the temperature and, for mixtures, composition dependence of the bulk viscosity.  相似文献   

11.
An extensive comparison of calorimetric and dielectric measurements is carried out for generic molecular liquids and monohydroxy alcohols with focus on the identification of the dielectric modes which are associated with the glass transition. For generic liquids, the calorimetric glass transition temperatures (T g-cal) are always greater than their kinetic counterparts (T g-kin), but the difference remains below 3 K. Also, the nonexponentiality parameters of the Tool-Narayanaswamy-Moynihan-Hodge model applied to the calorimetric data and the stretching exponents of the dielectric measurements show remarkable agreement. The same behavior is found for glass-forming monohydroxy alcohols, provided that the faster and smaller non-Debye relaxation rather than the large dielectric Debye process is assigned to the structural relaxation. The study emphasizes that the dielectric signature of the glass transition in monohydroxy alcohols is a dispersive loss peak that is faster and significantly smaller than the prominent Debye feature.  相似文献   

12.
The dynamic behaviors of ionic liquid samples consisting of a series of 1‐alkyl‐3‐methylimidazolium cations and various counteranionic species are investigated systematically over a wide frequency range from 1 MHz to 20 GHz at room temperature using dielectric relaxation (DR) and nuclear magnetic resonance (NMR) spectroscopies. DR spectra for the ionic liquids are reasonably deconvoluted into two or three relaxation modes. The slowest relaxation times are strongly dependent upon sample viscosity and cation size, whereas the relaxation times of other modes are almost independent of these factors. We attribute the two slower relaxation modes to the rotational relaxation modes of the dipolar cations because the correlation times of the cations evaluated using longitudinal relaxation time (T1 13C NMR) measurements corresponded to the dielectric relaxation times. On the other hand, the fastest relaxation mode is presumably related to the inter‐ion motions of ion‐pairs formed between cationic and anionic species. In the case of the ionic liquid bis(trifluoromethanesulfonyl)imide, the system shows marked dielectric relaxation behavior due to rotational motion of dipolar anionic species in addition to the relaxation modes attributed to the dipolar cations.  相似文献   

13.
We have measured the dielectric relaxation of several glass forming branched alkanes with very low dielectric loss in the frequency range 50 Hz-20 kHz. The molecular liquids of this study are 3-methylpentane, 3-methylheptane, 4-methylheptane, 2,3-dimethylpentane, and 2,4,6-trimethylheptane. All liquids display asymmetric loss peaks typical of supercooled liquids and slow beta relaxations of similar amplitudes. As an unusual feature, deliberate doping with 2-ethyl-1-hexanol, 5-methyl-2-hexanol, 2-methyl-1-butanol, 1-propanol, or 2-methyltetrahydrofuran at the 1 wt % level generates additional relaxation peaks at frequencies below those of the alpha relaxation. The relaxation times of these sub-alpha-peaks increase systematically with the size of the dopant molecules. Because these features are spectrally separate from the bulk dynamics, the rotational behavior and effective dipole moments of the probes can be studied in detail. For the alcohol guest molecules, the large relative rotational time scales and small effective dipole moments are indicative of hydrogen bonded clusters instead of individual molecules.  相似文献   

14.
The structural relaxation time for series of various liquids (alkanes, aliphatic alcohols, and diols) are calculated from published data on the shear viscosity and the heat of evaporation per unit volume. Liquids having a 3D H-bond network (diols) are characterized by relaxation times one to two orders of magnitudes longer than those typical of liquids without such a network (alkanes and aliphatic alcohols).  相似文献   

15.
We have performed the heat capacity, neutron diffraction, and neutron quasielastic scattering measurements of an ionic liquid 1-octyl-3-methylimidazolium chloride (C8mimCl). The heat capacity data revealed that C8mimCl exhibits a glass transition with a large heat capacity jump at T(g) = 214 K, which is lower than T(g) of C4mimCl with a shorter alkyl-chain. In the neutron diffraction measurement for a deuterated analogue, d-C8mimCl, the peaks associated with the inter-domain, inter-ionic, and inter-alkyl-chain correlations appeared at (3, 11, and 14) nm(-1), respectively. The temperature dependence of these peaks indicates that the packing of the alkyl-chains becomes more compact and the domains become more vivid and larger as decreasing temperature. The quasielastic neutron scattering measurements using neutron spin echo and time-of-flight type instruments demonstrated that C8mimCl has faster relaxations probably owing to the alkyl-group and a slower relaxation owing to the ions. The latter relaxation, which is related to the glass transition, is of non-exponential as in the α relaxation of glass-forming molecular liquids. The relaxation of domains could not be observed in the present experiment but should have relaxation times longer than 100 ns. This is the first report to clarify temperature dependence of the hierarchical structure and relaxations simultaneously for a typical ionic liquid.  相似文献   

16.
Dielectric relaxation dynamics of secondary amides is explored in their supercooled state near the glass transition temperature Tg by investigating N-ethylacetamide and its mixtures with N-methylformamide. All the samples are found to exhibit giant dielectric permittivities, reaching over 500 in N-methylformamide-rich mixtures around Tg. For both the neat and binary systems, the predominant relaxation peak is of the Debye-type throughout the viscous regime, which is an unexpected feature for a glass former with intermediate fragility. The present results combined with the earlier reported high-temperature data reveal that the dielectric strength delta epsilon(D) of the Debye relaxation extrapolates to zero at frequencies of 10(10)-10(11) Hz, which is about two orders of magnitude lower than the phonon frequency limit typical of the structural relaxation. This Debye process is remarkably similar to the dielectric behavior of many monohydroxy alcohols, which implies a common nature of purely exponential relaxation dynamics in these liquids. Based on the dielectric properties, we conclude that the Debye relaxation in the secondary amides is not a direct signature of the primary or alpha-relaxation, the latter being obscured at low temperatures due to the relatively low permittivity and close spectral proximity to the Debye peak. As in the case of monohydroxy alcohols, dielectric polarization and structure fluctuate on different time scales in secondary amides. The Kirkwood-Fr?hlich correlation factors for Debye-type liquids are also discussed.  相似文献   

17.
Depolarized dynamic light scattering (DLS), dielectric relaxation (DS), and deuterium NMR studies of fragile van der Waals glass forming liquids phenylphthalein-dimethylether (PDE) and cresolphthalein-dimethylether (KDE) are presented. In PDE a new dielectric loss process was found, which can be attributed to the 180 degrees flip of the phenyl rings. The previous finding that the distribution of the structural relaxation times measured for PDE and KDE by DS is substantially narrower than that measured by DLS is explained by partial decoupling of the dynamics of the dipole moment from the structural relaxation of the sample. The dynamics of PDE and KDE is compared with the previous studies of two other structurally similar liquids: 1,1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC) and 1,1'-bis(p-methoxyphenyl)cyclohexane (BMPC) in order to relate dynamical features with the chemical structure of the material. The evidence for the intramolecular character of the secondary relaxations observed in BMPC and PDE is presented.  相似文献   

18.
Dielectric relaxation and dynamic heat capacity measurements are compared for 2-ethyl-1-hexanol near its glass transition temperature Tg in order to further clarify the origin of the prominent Debye-type loss peak observed in many monohydroxy alcohols and other hydrogen-bonding liquids. While the dielectric spectrum epsilon" displays two distinct polarization processes that are separated by a factor of 2000 in terms of the peak frequency, the heat capacity cp" shows only a single peak. The dielectric process with lower amplitude and higher peak frequency coincides with the calorimetric signal, whereas the large dielectric Debye signal is not associated with calorimetric modes. The authors conclude that the Debye process corresponds to a transition among states which differ in energy only in the case of an external electric field.  相似文献   

19.
Self-diffusion coefficients of different classes of polar solvents are measured by the proton spin echo method in the temperature range of 288–318 K. In the same temperature range viscosities and dielectric relaxation times of the liquids under study are measured or taken from the literature and the activation energies of self-diffusion processes, viscous flow, and dielectric relaxation are calculated. The results obtained are compared with the literature data on structural relaxation times in the studied solvents and the conclusion is drawn about the role of the spatial hydrogen bond network in the mobility of molecules forming this network.  相似文献   

20.
The box model, originally introduced to account for the nonresonant hole burning (NHB) dielectric experiments in supercooled liquids, is compared to the measurements of the third harmonics P(3) of the polarisation, reported recently in glycerol, close to the glass transition temperature T(g) [C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L'H?te, G. Biroli, and J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)]. In this model, each box is a distinct dynamical relaxing entity (hereafter called dynamical heterogeneity (DH)) which follows a Debye dynamics with its own relaxation time τ(dh). When it is submitted to a strong electric field, the model posits that a temperature increase δT(dh), depending on τ(dh), arises due to the dissipation of the electrical power. Each DH has thus its own temperature increase, on top of the temperature increase of the phonon bath δT(ph). Contrary to the "fast" hole burning experiments where δT(ph) is usually neglected, the P(3) measurements are, from a thermal point of view, fully in a stationary regime, which means that δT(ph) can no longer be neglected a priori. This is why the version of the box model that we study here takes δT(ph) into account, which implies that the δT(dh) of the DHs are all coupled together. The value of P(3), including both the "intrinsic" contribution of each DH as well as the "spurious" one coming from δT(ph), is computed within this box model and compared to the P(3) measurements for glycerol, in the same range of frequencies and temperatures T. Qualitatively, we find that this version of the box model shares with experiments some nontrivial features, e.g., the existence of a peak at finite frequency in the modulus of P(3) as well as its order of magnitude. Quantitatively, however, some experimental features are not accounted for by this model. We show that these differences between the model and the experiments do not come from δT(ph) but from the "intrinsic" contribution of the DHs. Finally, we show that the interferences between the 3ω response of the various DHs are the most important issue leading to the discrepancies between the box model prediction and the experiments. We argue that this could explain why the box model is quite successful to account for some kinds of nonlinear experiments (such as NHB) performed close to T(g), even if it does not completely account for all of them (such as the P(3) measurements). This conclusion is supported by an analytical argument which helps understanding how a "space-free" model as the box model is able to account for some of the experimental nonlinear features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号