首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anionic and cationic multiwalled carbon nanotube polyelectrolytes, prepared by covalent modification of multiwalled carbon nanotubes (MWCNTs) with poly(acrylic acid) and poly(acrylamide), were used for the layer-by-layer (LBL) self-assembly of MWCNTs on different substrates with polyelectrolytes, such as poly(diallyldimethylammonium chloride) and sodium poly(styrenesulfonate). Thermogravimetric analysis, Raman spectroscopy, and scanning electron microscopy (SEM) were used to demonstrate the modification of MWCNTs. Investigations using Fourier transform infrared spectroscopy, atomic force microscopy, SEM, and ultraviolet-visible spectroscopy proved this method to be practicable for preparing LBL films.  相似文献   

2.
<正>The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform assembly of anionic and cationic MWNTs was investigated by UV-vis spectroscopy.Scanning electron microscopy(SEM) images displayed the growth of the MWNT films.  相似文献   

3.
HiPco single-wall carbon nanotubes (SWNTs) have been noncovalently modified with ionic pyrene and naphthalene derivatives to prepare water-soluble SWNT polyelectrolytes (SWNT-PEs), which are analogous to polyanions and polycations. The modified nanotubes have been characterized with UV-vis-NIR, fluorescence, Raman and X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The nanotube-adsorbate interactions consist of pi-pi stacking interactions between the aromatic core of the adsorbate and the nanotube surface and specific contributions because of the substituents. The interaction between nanotubes and adsorbates also involves charge transfer from adsorbates to SWNTs, and with naphthalene sulfonates the role of a free amino group was important. The ionic surface charge density of the modified SWNTs is constant and probably controlled by electrostatic repulsion between like charges. The linear ionic charge density of the modified SWNTs is similar to that of common highly charged polyelectrolytes.  相似文献   

4.
The layer-by-layer (LbL) assembly of carboxylated single-walled carbon nanotubes (SWCNT) is demonstrated to tune the electrochemical pH sensitivity of thin-film devices. The positively charged amine containing weak polyelectrolyte (wPE) is used as a counter species to control the proximal ions. The LbL assembly process is monitored by the quartz crystal microbalance, which results in the linear growth of a multilayer. The amount adsorbed is strongly dependent on the surface charge of previously deposited species. However, the thickness of the multilayer is determined by both the amount adsorbed and the coiling of polyelectrolyte chains. Indeed, electrical and structural characteristics of the (wPE/SWCNT) multilayer thin film are obtained according to the acid dissociation constants of amino groups in wPE. The electrochemical pH sensitivity in the physiological range demonstrates the effects of both charge carrier doping/trapping and proximal ions on the conductance of the SWCNT multilayer. Although doping/trapping shows the decreasing conductance, the proximal ion effect reveals the increasing conductance with pH in the basic region as a result of the p-type semiconducting nature of SWCNTs and the ability of wPE to capture hydrogen ions. This work sheds light on the applicability of nanostructured and/or engineered functional thin films of SWCNTs as chemical and biological sensors.  相似文献   

5.
Carbon nanotubes have been featured prominently in the nanotechnology research for some time, yet robust strategies for noncovalent chemical modification of the nanotube surface are still missing. Such strategies are essential for the creation of functional device architectures. Here, we present a new general procedure for carbon nanotube modification based on polyelectrolyte layer-by-layer assembly. We have built multilayer structures around individual carbon nanotube bridges by first modifying the nanotube surface with a pyrene derivative followed by layer-by-layer deposition of polyelectrolyte macroions on the nanotube. Transmission electron microscopy and scanning confocal fluorescence microscopy images confirm the formation of nanometer-thick amorphous polymer nanoshells around the nanotubes. These multilayer polyelectrolyte shells on individual carbon nanotubes introduce nearly unlimited opportunities for the incorporation of various functionalities into nanotube devices, which, in turn, opens up the possibility of building more complex multicomponent structures.  相似文献   

6.
Model composites of DNA-wrapped single-wall carbon nanotubes in poly(acrylic acid) are used to evaluate metrics of nanotube dispersion. By varying the pH of the precursor solutions, we introduce a controlled deviation from ideal behavior. On the basis of small-angle neutron scattering, changes in near-infrared fluorescence intensity are strongly correlated with dispersion, while optical absorption spectroscopy and resonant Raman scattering are less definitive. Our results represent the first systematic comparison of currently accepted measures of nanotube dispersion.  相似文献   

7.
Upon reduction with alkali metals, single-wall carbon nanotubes (SWNTS) are shown to form polyelectrolyte salts that are soluble in polar organic solvents without any sonication, use of surfactants, or functionalization whatsoever, thus forming true thermodynamically stable solutions of naked SWNTs.  相似文献   

8.
Single-wall carbon nanotubes (SWNTs) chemically assembled on gold substrates were employed as electrodes to investigate the charge transfer process between SWNTs and the underlying substrates. Cyclic voltammetry (CV) indicates that the assembled SWNTs allow electron communication between a gold electrode and the redox couple in solution, though the SWNTs are linked directly onto the insulating monolayer of 11-amino-n-undecanethiol (AUT) on the Au substrate. An electron transfer (ET) mechanism, which contains an electron tunneling process across the AUT monolayer, is proposed to explain the CV behavior of Au/AUT/SWNT electrodes. Electrochemical measurements show that the apparent electron tunneling resistance, which depends on the surface density of assembled SWNTs, has apparent effects similar to those of solution resistance on CV behavior . The theory of solution resistance is used to describe the apparent tunneling resistance. The experimental results of the dependence of ET parameter psi on the potential scan rate upsilon are in good agreement with the theoretical predictions. Kinetic studies of the chemical assembly of SWNTs by atomic force microscopic (AFM), electrochemical, and Raman spectroscopic methods reveal that two distinct assembly kinetics exist: a relatively fast step that is dominated by the surface reaction, and a successive slow step that is governed by bundle formation.  相似文献   

9.
Raman studies of solutions of single-wall carbon nanotube salts   总被引:4,自引:0,他引:4  
Polyelectrolyte solutions of Na-doped single-wall carbon nanotube (SWNT) salts are studied by Raman spectroscopy. Their Raman signature is first compared to undoped SWNT suspensions and dry alkali-doped SWNT powders, and the results indicate that the nanotube solutions consist of heavily doped (charged) SWNT. Raman signature of doping is then used to monitor in situ the oxidation reaction of the nanotube salt solutions upon exposure to air and to an acceptor molecule (benzoquinone). The results indicate a direct charge-transfer reaction from the acceptor molecule to the SWNT, leading to their gradual charge neutralization and eventual precipitation in solution. The results are consistent with a simple redox titration process occurring at the thermodynamical equilibrium.  相似文献   

10.
11.
[reaction: see text] Carbon nanotube salts prepared by treating single-wall carbon nanotubes (SWNTs) with lithium in liquid ammonia react readily with aryl iodides to give SWNTs functionalized by aryl groups.  相似文献   

12.
In this paper, we describe organic surface modification and functionalization of a hafnia substrate, which has been extensively investigated as a replacement of the gate insulting SiO2 layer in field effect transistors. The surface state of the hafnia was assessed by water contact angle (θwater) measurement with comparison to that of the silicone during the layer-by-layer (LBL) deposition of poly(allyamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) bilayers by means of the spin-coating electrostatic self-assembly, SCESA, method. The surface state of virgin hafnia (θwater = 73 ± 1°) turned hydrophilic (θwater = 8 ± 2°) after submission to the standard RCA cleaning process of silicon. The thickness of the multilayer films on the cleaned hafnia surface was found to grow linearly with an increase in the number of PAH/PSS bilayers (d = 2.2 ± 0.1 nm), indicating the consistency in the formation of uniform films. The average water contact angle of the PAH and PSS layers on hafnia alternately switched between 36.0 ± 0.7° and 29.7 ± 0.4° during the nine deposition cycles. The analysis of the surface topography by means of atomic force microscopy (AFM) indicated that the surface roughness of the first PAH layer deposited on the hafnia was strongly smoothed from 1.54 to 0.44 nm with increasing the LBL deposition of polyelectrolytes.  相似文献   

13.
Carbon nanotubes have been proposed as support materials for numerous applications, including the development of DNA sensors. One of the challenges is the immobilization of DNA or other biological molecules on the sidewall of carbon nanotubes. This paper introduces a new fabrication of DNA-carbon nanotubes particles using the layer-by-layer (LBL) technique on single-walled carbon nanotubes (SWCNTs). Poly(diallyldimethylammonium) (PDDA), a positively charged polyelectrolyte, and DNA as a negatively charged counterpart macromolecule are alternatively deposited on the water-soluble oxidized SWCNTs. Pure DNA/PDDA/SWCNTs particles can be prepared and separated by simple unltracentrifugation. The characterization of DNA/PDDA/SWCNTs particles was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy, Raman spectroscopy, and thermogravimetric analysis (TGA). An electrode modified by the DNA/PDDA/SWCNTs particles shows a dramatic change of the electrochemical signal in solutions of tris(2,2'-bipyridyl)ruthenium(II) ((Ru(bpy)(3)2+) as a reporting redox probe. A preliminary application of the DNA-modified carbon nanotubes in the development of DNA sensors used in the investigation of DNA damage by nitric oxide is presented.  相似文献   

14.
The electrochemical response of two-dimensional networks of pristine single-wall carbon nanotubes (SWNTs) has been investigated. SWNTs were grown by catalyzed chemical vapor deposition on an insulating SiO2 substrate, and then electrically contacted by lithographically defined Au electrodes. Subsequent insulation of the contact electrodes enabled the electrochemical properties of the SWNT network to be isolated and directly studied for the first time. The electrochemical activity of the SWNT network was found to be strongly dependent on the applied potential. For the same SWNT electrode, the limiting current for the oxidation of 5 mM Fe(phen)32+ was found to be much greater than expected based on the signal for the reduction of 5 mM Ru(NH3)63+. Simultaneous conductance and electrochemical measurements demonstrated decreasing conductance as the potential was scanned negative (versus Ag/AgCl) with the minimum conductance at around the reduction potential for Ru(NH3)63+. These results are consistent with the presence of both metallic and semiconducting SWNTs in the SWNT network electrode. Moreover, these results show that through appropriate choice of mediator and electrode potential, metallic SWNTs can be electrochemically addressed independently of semiconducting SWNTs.  相似文献   

15.
A material containing single-wall carbon nanotubes (SWCNTs) with other carbon species, catalyst residues, and trace element contaminants has been prepared by the National Institute of Standards and Technology for characterization and distribution as Standard Reference Material SRM 2483 Carbon Nanotube Soot. Neutron activation analysis (NAA) and inductively coupled plasma mass spectrometry (ICP–MS) were selected to characterize the elemental composition. Catalyst residues at percentage mass fraction level were determined with independent NAA procedures and a number of trace elements, including selected rare earth elements, were determined with NAA and ICP–MS procedures. The results of the investigated materials agreed well among the NAA and ICP–MS procedures and good agreement of measured values with certified values was found in selected SRMs included in the analyses. Based on this work mass fraction values for catalyst and trace elements were assigned to the candidate SRM.  相似文献   

16.
Directed self-assembly of surfactants in carbon nanotube materials   总被引:1,自引:0,他引:1  
The self-assembly of surfactant molecules on crossing carbon nanotubes has been investigated using a bead-spring model and implicit solvent dissipative particle dynamics simulations. Adsorption is directed to the nanotube crossing by its higher hydrophobic potential which is due to the presence of two surfaces. As a consequence of the tendency of surfactant molecules to self-assemble into micelles, the adsorbed molecules form a "central aggregate" at the crossing, thus, confining the molecules to the immediate vicinity of the crossing. Adsorption on the remaining nanotube surface becomes significant only at higher surfactant concentrations, where the molecules self-assemble to hemimicelles which grow continuously to full micelles upon increase of the (bulk) surfactant concentration. Our results allow two conclusions for the rational design of nanostructured materials: (i) the size of the central aggregate can not be much larger than that of a bulk micelle and (ii) control of the adsorbed structures is conveniently possible via the (bulk) surfactant concentration.  相似文献   

17.
Layer-by-layer nanotube template synthesis   总被引:2,自引:0,他引:2  
Electroless deposition of gold on the pore walls of polycarbonate templates is currently the best known method for controlling inside diameters of template-synthesized nanotubes. It would be very useful to have alternative template-based synthetic chemistries that yield nanotubes composed of other materials, but which still allow for precise control over the nanotube wall thickness and i.d. A film-formation process that is based on layer-by-layer deposition of the film-forming material along the pore walls of the template membrane provides this desired alternative synthetic chemistry. We describe here the use of Mallouk's alpha,omega-diorganophosphonate/Zr layer-by-layer film-forming method for preparing nanotubes within the pores of alumina template membranes. We have found that this method allows accurate, quantitative, and predictable control over the wall thickness, and thus i.d., of the layered nanotubes obtained.  相似文献   

18.
在滴涂法制得单壁碳纳米管(SWNTs)修饰电极的基础上,采用电化学方法沉积纳米羟基磷灰石(HA)涂层,进而利用分子组装技术将葡萄糖氧化酶(GOD)固定到该电极上,制得的修饰电极的循环伏安测量结果表明,GOD发生了直接的电子传递.GOD-HA-SWNTs/GC修饰电极对不同浓度的葡萄糖呈现两个良好的线性响应范围,有望开发...  相似文献   

19.
20.
We succeeded in integrating single-wall carbon nanotubes (SWNTs), several water-soluble pyrene derivatives (pyrene(-)), which bear negatively charged ionic headgroups, and a series of water-soluble metalloporphyrins (MP(8+)) into functional nanohybrids through a combination of associative van der Waals and electrostatic interactions. The resulting SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8+) were characterized by spectroscopic and microscopic means and were found to form stable nanohybrid structures in aqueous media. A crucial feature of our SWNT/pyrene(-) and SWNT/pyrene(-)/MP(8)(+) is that an efficient exfoliation of the initial bundles brings about isolated nanohybrid structures. When the nanohybrid systems are photoexcited with visible light, a rapid intrahybrid charge separation causes the reduction of the electron-accepting SWNT and, simultaneously, the oxidation of the electron-donating MP(8)(+). Transient absorption measurements confirm that the radical ion pairs are long-lived, with lifetimes in the microsecond range. Particularly beneficial are charge recombination dynamics that are located deep in the Marcus-inverted region. We include, for the first time, work devoted to exploring and testing FeP(8)(+) and CoP(8)(+) in donor-acceptor nanohybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号