首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

2.
The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10−11 cm3 molecule−1s−1. The rate constant of the reverse reaction: I+Br2→Br+IBr (−1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k−1=(1.65±0.2)×10−13 cm3molecule−1s−1. The equilibrium constant for the reactions (1,−1), resulting from these direct determinations of k1 and k−1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k−1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=−(3.6±0.1) kcal mol−1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol−1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933–940, 1998  相似文献   

3.
The ab initio direct dynamics method at the G2//UQCISD/6-311 + G(d,p) level is employed to study the hydrogen abstraction reaction C2(3Πu)+H2 → C2H+H over a wide temperature range 100–4650 K. The barrier heights obtained for the forward and reverse reactions are 7.78 and 17.53 kcal/mol, respectively. Comparing with one recent experiment, the calculated forward rate constants over the temperature range 2580–4650 K are about 4.4–13.5 times greater and show a steeper temperature-dependent effect. This indicates that further experimental investigation on this simple radical reaction may still be desired. Finally, G2//UQCISD/6-311 + G(2df,2p) calculations are performed to test the reliability of the G2//UQCISD/6-311 + G(d,p) results.  相似文献   

4.
The activation barrier for the CH4 + H → CH3 + H2 reaction was evaluated with traditional ab initio and Density Functional Theory (DFT) methods. None of the applied ab initio and DFT methods was able to reproduce the experimental activation barrier of 11.0-12.0 kcal/mol. All ab initio methods (HF, MP2, MP3, MP4, QCISD, QCISD(T), G1, G2, and G2MP2) overestimated the activation energy. The best results were obtained with the G2 and G2MP2 ab initio computational approaches. The zero-point corrected energy was 14.4 kcal mol−1. Some of the exchange DFT methods (HFB) computed energies which were similar to the highly accurate ab initio methods, while the B3LYP hybrid DFT methods underestimated the activation barrier by 3 kcal mol−1. Gradient-corrected DFT methods underestimated the barrier even more. The gradient-corrected DFT method that incorporated the PW91 correlational functional even generated a negative reaction barrier. The suitability of some computational methods for accurately predicting the potential energy surface for this hydrogen radical abstraction reaction was discussed.  相似文献   

5.
The low-pressure recombination rate constants of the reactions I + NO + M → INO + M (with 14 different M) and I + NO2 + M → INO2 + M (with 26 different M) have been measured at 330°K by laser flash photolysis. The collision efficiencies βc are analyzed and compared with other thermal activation systems. Whereas βc increases in one reaction with an increasing number of atoms in M, practically no such effect is found when, for the same M, different reactions with varying complexities of the reacting molecules are considered.  相似文献   

6.
The rate coefficient, k1, for the reaction I2+F2k1 products has been measured at room temperature to be k1 = (1.9 = 0.4) × 10?15 cm3/molecule s. The macroscopic rate is compared to microscopic cross-section data obtained from molecular beam experiments and is found to be consistent with the bimolecular reaction I2 + F2→ I2F + F.DG|National Research Council/Resident Research Associate.  相似文献   

7.
Topological properties of potential energy and electronic density distribution on five reaction paths X+H2→XH+H (X=H, N, HN, H2C, NC) are investigated at the level of UMP2/6–311G(d,p). It has been found that in the region of the reaction paths studied, where B(rc)|s>0 [B(rc)|s is the product of ρ(rc) and ∇2ρ(rc) at the point of reaction process, i.e., B(rc)|s=ρ(rc)∇2 ρ(rc)] is basically the same as the region of V′(s)<0[V′(s) is the second derivative of potential energy with respect to the reaction coordinate, i.e., V′(s)=d2V/ds2], and the point with maximum B(rc)|s is almost coincident with the point of minimum V′(s). It can be concluded from the calculated results that there is a good correlation between the topological properties of potential energy and electronic density distribution along the reaction path. The structure transition state of such collinear reactions may be determined by topological analysis of electronic density. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1167–1174  相似文献   

8.
Quasiclassical trajectory calculations have been performed to determine the effect of reactant collision energy on product state distributions in the reaction O(1D) + H2 → OH(2Π) + H. The product vibrational distribution becomes more excited as the collision energy is increased. This is not due to an increase in the cross section for collinear abstraction. A detailed analysis has shown that strong O---H2 repulsion, which occurs during the insertion of the O into the H---H bond, converts the kinetic energy of the reacting system to vibrational motion of the intermediate.  相似文献   

9.
The potential surface for the reaction H2CO+H → HCO+ + H2 has been studied by ab initio SCF calculations, using gaussian-type basis functions. A saddle point on the surface has been found, and a reaction path is proposed to explain the observed release of kinetic energy. The energy of activation and ΔE for the reaction have been estimated.  相似文献   

10.
The 147 nm (8.4 eV) photolysis of gaseous C2H5I, n-C3H7I, and sec-C3H7I was investigated in the presence of and absence of HI. The main overall processes are: These dissociative processes occur mainly as a result of initial cleavage of the weak C? I bond, followed by decomposition of the internally excited alkyl radicals. In all cases, approximately 5-10% of the alkyl radicals thus formed do not undergo dissociation at pressures around 3-7 torr. There is also evidence for the elimination of HI as well as C? C cleavage in the primary dissociation. The former is indicated by deuterium labeling experiments and the formation of cyclopropane (Φ = 0.04) as a product in the photolysis of n-C3H7I. Because the processes listed above provide a constant source of H atoms whose quantum yield can be exactly determined, it was feasible to obtain accurate values for ka/kb: For thermally equilibrated H atoms (300 K), ka/kb is 0.44 ± 0.04, 0.57 ± 0.06, 0.95 ± 0.1, and 0.024 ± 0.01 for C2H5I, n-C3H7I, sec-C3H7I, and C2H5Br, respectively.  相似文献   

11.
It is found that charge-transfer on NO2 with Cl2 is fast at thermal energy. The Cl2 ion reacts with NO2 to produce Cl and NO2Cl, and SH charge-transfers rapidly with both Cl2 and NO2. From the exothermicities implied it is deduced that EA (SH)<EA (NO2)< EA (Cl2) or EA (NO2) = 2.38 ± 0.06 eV and EA (Cl2 = 2.46 ± 0.14 eV.  相似文献   

12.
Chemiluminescent reactions involving copper and halogen molecules are shown to result from the bimolecular reaction of metastable Cu(2D) with Cl2, Br2, and I2 under single-collision conditions. The collision-energy dependence of the reactions is described by a hard-sphere model with zero threshold energy. Cross sections for these reactions are compared with that for chemiluminescent reaction of Cu(2S) with F2.  相似文献   

13.
Non-empirical self-consistent-field calculations have been carried out for 38 points on the potential surface for the Cl + H2 → ClH + H chemical reaction. A basis set of seven s, five p, and one d functions on chlorine and three s and one p on each hydrogen atom was used. The least energy path occurs for the linear Cl---H---H arrangement. A much higher barrier is found for the approach of Cl along the H---H perpendicular bisector. The linear barrier height is predicted to be 26.2 kcal/mole and the saddle point occurs for R(Cl---H) ≈ 1.46 Å, R(H---H) ≈ 0.94 Å. The experimental activation energy is 5.5 kcal/mole. It seems likely that a general feature of the Hartree-Fock approximation is an overestimation of barrier heights. The exothermicity is calculated to be −6.7 kcal/mole, compared to the near Hartree-Fock result −2.3 kcal/mole and experiment −3.0 kcal/mole.  相似文献   

14.
The dynamics of the NH + H→N+H2 reaction has been investigated by means of the 3D quasiclassical trajectory approach by using the LEPS potential energy surface.The calculated rate coefficient is in good agreement with the experimental value.The reaction was found to occur via a direct channel.The product H2 has a cold excitation of rotational state,but has a reverse distribution of the vibrational state with a peak at v=1.Based on the potential energy surface and the trajectory analysis,the reaction mechanism has been explained successfully.  相似文献   

15.
In addition to the red phosphorescence (T1(3 A2n, π*) → S0) xanthione exhibits in solution an emission with a maximum at ≈ 23 000 cm−1 and φf(298°) = 5 × 10−3. It is shown that this emission is fluorescence from the second excited singlet state (S2 (1A1 π, π*) → S0).  相似文献   

16.
The intensity of the chemiluminescence continua from the title reactions was measured in crossed effusive molecular beams as a function of halogen beam flux. The dominant quadratic pressure dependence of the Ba + Cl2, Br2, I2 reactions at halogen densities as low as ≈ 1011 molecules/cm3 indicates a three-body process (rapid collissional stabilization of a very long-lived collision complex) as the major mode of MX*2 formation, while a two-body process is discernible at the lowest X2 gas densities. The mechanism is discussed in some detail.  相似文献   

17.
The reaction of atomic hydrogen with isocyanic acid (HNCO) to produce the amidogen radical (NH2) and carbon monoxide, has been studied in shock-heated mixtures of HNCO dilute in argon. Time-histories of the ground-state NH2 radical were measured behind reflected shock waves using cw, narrowlinewidth laser absorption at 597 nm, and HNCO time-histories were measured using infrared emission from the fundamental v2-band of HNCO near 5 μm. The second-order rate coefficient of reaction (2(a)) was determined to be: cm3 mol?1 s?1, where f and F define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be:   相似文献   

18.
The effect on the thermal rate constant and the differential cross-sections of varying the dimensionality of quantum scattering calculations of a polyatomic reaction is investigated. The rotating bond approximation (RBA; 3D) and a rotating line approximation (RLA; 2D) are used for the CH4 + OH → CH3 + H2O reaction. It is found that the RBA and RLA results are in close agreement when an adiabatic treatment is used for the degree of freedom which is treated explicitly in the RBA but not in the RLA.  相似文献   

19.
A three-dimensional potential energy surface for the 2A′ ground state of the system (Ne? H2)+ (2Σ+ in collinear geometry) has been calculated at SCF and CEPA levels. This surface describes the abstraction reaction which is endoergic by 0.57 eV (ΔH00) and has been studied recently by different experimental groups at low collision energies. Our CEPA calculations yield an endoergicity of 0.55 eV (ΔH00). The 2A′ surface has a minimum at collinear geometry with RNe—H = 2.29 a0 and RH? H = 2.08 a0 and a well depth of 0.49 eV relative to Ne + H+2. The effects of electron correlation on the shape of the surface and on the well depth are discussed. An analytic fit of the collinear part of the surface has been constructed based on Simon's proposal of using polynomials in the coordinates (R? Re)/R instead of (R? Re). The fitted potential is used for quantum mechanical scattering calculations with the finite element method (FEM ). Preliminary results for reaction probabilities for H+2 in different vibrationally excited states are given and compared to the experimental results.  相似文献   

20.
An explicit function has been derived for the potential-energy surface of the ground state of ClO3 with the six interatomic distances as variables. This surface is valid over all configurations of the atoms. The surface has been used to calculate classical trajectories for the reactions R1: O(3P2)+ClO(2Π3/2)→ O2(3∑)+Cl(2)P3/2 and R2: Cl(2P3/2)+O3(1A1)→ClO(2Π3/2)+O2(3∑). An appreciable fraction (~1/3) of the reactive trajectories for R1 go through a long-lived complex ClOO(2A″). The cross section decreases with increasing rotational state of the ClO; and 37% of the energy release is vibrational. The calculated rate constant at 298°K is 2.6 × 10?11 cm3/molecule sec. For reaction R2 there is no evidence of long-lived complexes. The product ClO is predominantly found in the backward-scattering direction. Most of the internal energy is carries off by ClO but O2 carried off most translational energy. An Arrhenius expression has been deduced from calculations at 220 and 300°K to give an A factor of 2.488 × 10?11 cm3/molecule sec and an activation energy of 1.543 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号