首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 °C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films’ phase composition, increasing with the increase of the Urbach energy for increasing rutile content.  相似文献   

2.
TiO2 films deposited on unheated substrates of alumina silicate glass by rf. (13.56 MHz) magnetron sputtering in the mixture of O2 and Ar gases have been studied with X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and optical spectroscopy. Structural and optical properties of TiO2 films deposited at different O2 concentrations and total pressures have been analyzed. Photocatalytic properties of TiO2 films were characterized by following the degradation of methylene blue molecules under UV irradiation. It was found that the rate of methylene blue decomposition strongly depends on morphology and crystallinity of the deposited films, namely on the content of the anatase phase and on the size of the anatase grains. The best photocatalytic activity was found on TiO2 films consisting of pure anatase phase with the size of grains of about 450 Å. With the help of those films a thin film reactor for water purification has been designed and tested.  相似文献   

3.
Titanium dioxide thin films were deposited on three different unheated substrates by unbalanced magnetron sputtering. The effects of the sputtering current and deposition time on the crystallization of TiO2 thin films were studied. The TiO2 thin films were deposited at three sputtering current values of 0.50, 0.75, and 1.00 A with different deposition times of 25, 35, and 45 min, respectively. The surface morphology of the films was investigated by atomic force microscopy (AFM). The structure was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The film thickness was determined by field emission scanning electron microscopy (FE-SEM), and the optical property was evaluated with spectroscopic ellipsometry. The results show that polycrystalline anatase films were obtained at a low sputtering current value. The crystallinity of the anatase phase increases as the sputtering current increases. Furthermore, nanostructured anatase phase TiO2 thin films were obtained for all deposition conditions. The grain size of TiO2 thin films was in the range 10–30 nm. In addition, the grain size increases as the sputtering current and deposition time increase.  相似文献   

4.
Titanium dioxide (TiO2) films with a thickness of 550 nm were deposited on quartz glass at 300 °C by metalorganic chemical vapor deposition. The effects of post-annealing between 600 °C and 1000 °C were investigated on the structural and optical properties of the films. X-ray diffraction patterns revealed that the anatase phase of as-grown TiO2 films began to be transformed into rutile at the annealing temperature of 900 °C. The TiO2 films were entirely changed to the rutile phase at 1000 °C. From scanning electron spectroscopy and atomic force microscopy images, it was confirmed that the microstructure of as-deposited films changed from narrow columnar grains into wide columnar ones. The surface composition of the TiO2 films, which was analyzed by X-ray photoelectron spectroscopy data, was nearly constant although the films were annealed at different temperatures. When the annealing temperature increased, the transmittance of the films decreased, whereas the refractive index and the extinction coefficient calculated by the envelope method increased at high temperature. The values of optical band gap decreased from 3.5 eV to 3.25 eV at 900 °C. This abrupt decrease was consistent with the anatase-to-rutile phase transition. Received: 4 October 2000 / Accepted: 4 December 2000 / Published online: 23 May 2001  相似文献   

5.
《Current Applied Physics》2010,10(6):1461-1466
Titanium dioxide (TiO2) films were deposited onto non-alkali glass substrates by r.f. magnetron sputtering at an [O2/(Ar + O2)] flow-rate of 0, 20, 40, 60 and 70%, respectively. The sputtering pressure was 10 mtorr, substrate temperature was around 450 °C after 3 h deposition. The crystalline structure, surface morphology and photocatalytic activity of the TiO2 films were affected by various [O2/(O2 + Ar)] flow-rate ratios. The films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and UV–vis–NIR spectroscopy. X-ray diffraction spectra showed that all the films display anatase (1 0 1) preferred orientation. Photoinduced decomposition of methylene blue (MB) and photoinduced hydrophilicity were enhanced when the [O2/(Ar + O2)] flow-rate increased to 60%.  相似文献   

6.
For photocatalytic thin film applications TiO2 is one of the most important materials. The most studied TiO2 crystal phase is anatase, though also rutile and brookite show good photoactivity. Usually anatase or a mixture of rutile and anatase is applied for powder or thin film catalysts. It has been claimed that amorphous films do not exhibit any or only a very low photocatalytic activity.We have deposited amorphous thin films by dc magnetron sputtering from sub-stoichiometric TiO2−x targets. The coatings are transparent and show a photocatalytic activity half of that of a thin layer of spin-coated reference photocatalyst powder. Annealing the thin films to yield anatase crystallization more than doubles their photocatalytic activity. At the same film thickness these thin films show the same activity as a commercially available photocatalytic coating.The dependence of the photocatalytic activity on deposition parameters like gas pressure and sputter power is discussed. A decrease in film density, as deduced from the refractive index and the microstructure, resulted in an increase in photocatalytic activity. Film thickness has a marked influence on the photocatalytic activity, showing a strong increase up to 300-400 nm, followed by a much shallower slope.  相似文献   

7.
Titanium dioxide thin films have been deposited by metalorganic chemical vapor deposition (MOCVD) over sodalime glass substrates at substrate temperatures ranging from 250 °C to 450 °C. The effect of deposition temperature on the structure and microstructure of the obtained films has been studied by x-rays diffraction (XRD) and scanning electron microscopy (SEM), respectively. Diffraction patterns show the existence of a pure anatase phase beside a texture change with the increase of deposition temperature. Micrographs show grain fragmentation with the increase in deposition temperature. UV–Vis. spectra have been recorded by spectrophotometery. The optical energy gap has been calculated for the deposited films from the spectrophotometrical data. Photocatalytic experiments have been carried out. The photocatalytic activity has been found to decrease with the increase in deposition temperature.  相似文献   

8.
The photocatalytic activity of TiO2 films deposited on different substrates by the spray-drying method using suspensions of commercially available TiO2 (Degussa P25 or Tronox) as starting material was studied. The influence of the type of the initial TiO2, preparation conditions (temperature of the substrate during the film deposition, temperature of the post-deposition annealing), substrate material (glass, fused silica, stainless steel and graphite), the presence of additives in the spraying suspension (polyethylene glycol, ethylene glycol and acetylacetone) and its sonication before spraying on the morphology, size of crystallites and phase composition (rutile/anatase ratio) was studied. Optimal conditions for spray deposition of the films are suggested.  相似文献   

9.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

10.
We have investigated the control of photocatalytic behavior under deposited conditions of non-sintered target of different molar ratios with TiO2 and La2O3 from 1:0 to 1:2 for heavily La doping, and post-annealing temperature from 600 °C to 1000 °C for crystallizing by pulsed laser deposition. We have successfully crystallized heavily La-doped TiO2 films with post-annealing temperature over 800 °C and with molar ratio of TiO2:La2O3 over 1:1 on a quartz substrate. Heavily La-doped TiO2 films are observed the decomposition of methylene blue and a water-splitting reaction in photocatalytic behavior under Xe light irradiation. When stoichiometric La-doped TiO2 (TiO2:La2O3 = 1: 1) is synthesized with heat-treatment at 900 °C, the best results are obtained under photocatalytic behavior and pure La2Ti2O7 crystalline were obtained.  相似文献   

11.
TiO2 films were prepared on a silicon or soda-glass substrate using a sol suspension. The TiO2 film on the silicon substrate was composed of pure anatase phase and showed almost no contaminations. In contrast, the TiO2 film on the soda-glass substrate was composed of anatase and brookite phases. The diffusion of Na into the TiO2 film on the soda-glass substrate was observed by XPS, and Na was concentrated on the surface of the film. The yield of the brookite phase increased with decreasing distance from the surface of the film on the soda-glass substrate. Na promoted the formation of the brookite phase, although the preparative procedure was used for anatase synthesis.  相似文献   

12.
In this paper we report on the effect of annealing on the microsctructural and optoelectronic properties of titanium dioxide (TiO2) thin films prepared using sol-gel method onto silicon (Si) (100) and quartz substrates. The annealing temperatures range from 200 to 1000 °C. The Microstructural properties of annealed thin films were investigated by Thermal gravimetric analyses (TGA), X-ray diffraction (XRD) and Raman Spectroscopy. The surface morphology of the film was examined using Atomic Force Microscopy (AFM) method. The optical properties of TiO2 thin films were characterized using UV-VIS and Spectroscopic ellipsometry. The results have shown that the TiO2 thin films persist in the anatase phase even after annealing at 800 °C. The phase transformation from anatase to rutile occurred only when the films were annealed at 1000 °C. AFM studies revealed nanocrystalline structure where their shape and density depend strongly on the annealing temperatures. The elaborated nanostructured-TiO2 thin films present a high transparency in the visible range. Spectroscopic ellipsometry (SE) study was used to determine the effect of annealing temperature on the thickness and on the optical constant of TiO2 thin films. Spectroscopic ellipsometry and UV-VIS shows that the band gap of TiO2 thin films was found to decrease when the annealing temperature increases. The Anatase phase was find to show higher photocatalytic activity than the rutile one.  相似文献   

13.
Evolution of microstructure and optical property with annealing temperature has been examined for Ba0.9Sr0.1TiO3 films derived from one single precursor solution containing polyethylene glycol polymer. The films sintered below 750°C exhibit a uniform phase structure across the cross-sections and an ordinary optical thin film feature, while the Ba0.9Sr0.1TiO3 films crystallized at 750°C or higher temperature render a lamellar texture consisting of dense and porous Ba0.9Sr0.1TiO3 layers and a good performance as a one-dimensional photonic crystal. The discrepancy in cross-sectional morphology and reflectance property observed in these Ba0.9Sr0.1TiO3 films has been preliminarily explained.  相似文献   

14.
Nanoparticle TiO2/Ti films were prepared by a sol–gel process using Ti(OBu)4 as raw material, the as-prepared film samples were also characterized by TG-DTA, XRD, TEM, SEM, XPS, DRS, PL, SPS and EFISPS testing techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e. amorphous to anatase and anatase to rutile at the calcining temperature range from 450 to 700 °C. TiO2 nanoparticles calcined at 600 °C had similar composition, structure, morphology and particle size with the internationally commercial P-25 TiO2 particles. Thus, the conclusion that 600 °C might be the most appropriate calcining temperature during the preparation process of nanoparticle TiO2/Ti film photocatalysts could be made by considering the main factors such as the properties of TiO2 nanoparticles, the adhesion of nanoparticle TiO2 film to Ti substrate, the effects of calcining temperature on Ti substrate and the surface characteristics and morphology of nanoparticle TiO2/Ti film for the practice view. The Ti element mainly existed on the nanoparticle TiO2/Ti(3) film calcined at 600 °C as the chemical state of Ti4+, while O element mainly existed as three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and adsorbed oxygen with increasing band energy. Its photoluminescence (PL) spectra with a peak at about 380 nm could be observed using 260 nm excitation, possibly resulting from the electron transition from the bottom of conduction band to the top of valence band. The PL peak position was nearly the same as the onset of its diffuse reflection spectra (DRS) and surface photovoltage spectroscopy (SPS), demonstrating that the effects of the quantum size on optical property were greater than that of the Coulomb and surface polarization. The PL spectra with two peaks related to the anatase and rutile, respectively, could be observed using the excited wavelength of 310 nm. Weak PL spectra could be observed using the excited wavelength of 450 nm, resulting from surface states. In addition, during the experimental process of the photocatalytic degradation phenol, the photocatalytic activity of nanoparticle TiO2/Ti film with three layers calcined at 600 °C was the highest.  相似文献   

15.
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.  相似文献   

16.
Optical, structural and photocatalytic properties of TiO2 thin films obliquely deposited on quartz glass substrate using an electron-beam evaporation method were investigated. The photocatalytic activity of the films was evaluated by photodecomposition of methylene blue. An increase in incident deposition angle increased the porosity and surface roughness of the TiO2 films. As a result, the photocatalytic activity was enhanced with incident deposition angle up to 60°. However, a further increase in incident deposition angle to 75° reduced the photocatalytic activity due to a lack of the crystalline phase.  相似文献   

17.
《Current Applied Physics》2014,14(3):421-427
Nb–TiO2 nanofibers and thin films were prepared using a sol–gel derived electrospinning and spin coating, respectively, by varying the Nb/Ti molar ratios from 0 to 0.59 to investigate the effect of Nb doping on morphology, crystal structure, and optical band gap energy of Nb–TiO2. XRD results indicated that Nb–TiO2 is composed of anatase and rutile phases as a function of Nb/Ti molar ratio. As the Nb/Ti molar ratio rose, the anatase to rutile phase transformation and the reduction in crystallite size occurred. The band gap energy of Nb–TiO2 was changed from 3.25 eV to 2.87 eV when the anatase phase was transformed to rutile phase with increasing the Nb doping. Experimental results indicated that the Nb doping was mainly attributed to the morphology, the crystal structure, the optical band gap energy of Nb–TiO2, and the photocatalytic degradation of methylene blue.  相似文献   

18.
This paper deals with photocatalytic activity of silver treated TiO2 films. The TiO2 films were deposited on glass substrates by plasma enhanced chemical vapor deposition (PECVD) in a vacuum reactor with radio frequency (RF) low temperature plasma discharge in the mixture of oxygen and titanium isopropoxide vapors (TTIP). The depositions were performed under different deposition conditions. Subsequently, the surface of TiO2 films was modified by deposition of silver nanoparticles. Photocatalytic activity of both silver modified and unmodified TiO2 films was determined by decomposition of the model organic matter (acid orange 7). Selected TiO2 samples were used for tests of antibacterial activity. These tests were performed on Gram-negative bacteria Escherichia coli. The results clearly proved that presence of silver clusters resulted in enhancement of the photocatalytic activity, which was up to four times higher than that for pure TiO2 films.  相似文献   

19.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

20.
Nitrogen-doped TiO2 (N-TiO2) films were prepared by low-energy implantation of nitrogen ions into pulsed laser deposited anatase TiO2 films. The anatase phase of the films was not changed by the implantation with very low energy of 200 eV. XPS measurements revealed that the implanted nitrogen species were mainly interstitial ones. The nitrogen concentration was increased with increasing ion flux which could be controlled by adjusting the gas flow rate of the ion source. All the produced N-TiO2 films exhibited visible-light photocatalytic activities in degradation of methylene blue in aqueous solutions, indicating that interstitial nitrogen could also be responsible for the photocatalysis in visible region. Higher visible-light photocatalytic efficiency was achieved with higher implanted nitrogen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号