首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

2.
《Surface science》1986,167(1):101-126
The kinetics and mechanism of the decomposition of methanol (CH3OD) on oxygen-covered Pt(111) were studied using static secondary ion mass spectrometry (SIMS) and temperature programmed desorption (TPD). The initial sticking coefficient and the saturation first layer coverage of CH3OD are unity and 0.36 ML, respectively. The maximum amounts decomposed in TPD on O/Pt(111) and clean Pt(111) are 0.19 and 0.047 ML, respectively. At low methanol coverages (< 0.05 ML) on O/Pt(111) the only reaction products were CO2, H2O and D2O, whereas at saturation CO, H2O, D2O and H2 were observed. The decomposed amount did not saturate at or before the onset of molecular methanol desorption, but increeased monotonically until saturation of the first layer. No oxygen exchange was observed between CH3OD and preadsorbed 18O. A decomposition mechanism involving methoxy and hydroxyl type species is proposed. Methanol coverages as low as 0.002 ML could be detected with SIMS. The CH3+ ion was the most intense ion in the positive SIMS spectrum of both methanol and methoxy. Larger ion clusters such as (CH3OD)n+ (n = 2, 3) developed successively at specific multilayer coverages. At low coverages on O/Pt(111), methoxy formation occurs above 125 K and its decomposition becomes detectable above 150 K during temperature programming. In the isothermal mode, the SIMS CH3+ ion was used to follow the kinetics. Over the temperature range 120–145 K, the second order Arrhenius rate parameters for methoxy formation are E = 5.5±0.7 kcal/mol and A = 1.5×10−7±0.6 cm2/s·molecule for an initial methanol coverage of 0.05 ML. Methoxy decomposition was studied in the temperature range 150–165 K and at an initial coverage of 0.015 ML. The first order kinetic parameters, E = 11.4±0.5 kcal/mol and A = 5.3×1013±1 s−1 were derived. Advantages and limitations of using SIMS as a tool for kinetic studies are discussed.  相似文献   

3.
The adsorbate induced (1×2) (1×1) (2×1)p1g1 phase transitions on Pt(110) have been studied by Rutherford backscattering (RBS), nuclear microanalysis (NMA), LEED and thermal desorption spectroscopy. RBS data indicate that any displacement of the surface atoms from their expected bulk-like lattice sites in the (1×2) phase is ? 0.002 nm laterally and ? 0.007 nm vertically. This contraint eliminates models for the reconstruction which involve significant lateral displacements (e.g., the paired-atom or hexagonal overlayer models). The RBS data are consistent with both the rumpled model with up/down displacements not exceeding ~0.007 nm and the missing row model with an unrelaxed surface in which the out-of-plane vibrational amplitude is slightly enhanced. A c(8×4) phase, produced by CO (or NO) exposure at T?250 K, has also been characterized by RBS which demonstrated that 0.92×1015 Pt cm?2 move on average by ~0.017 nm laterally out-of-registry with the bulk upon formation of this phase. The values of the saturation adsorbate coverages at T?200K were determined by NMA to be 0.92 ± 0.05×1015, 1.0 ± 0.06×1015 and 1.07 ± 0.10×1015 CO molecules, NO molecules and D atoms, respectively, per cm2. The value of the saturation coverage by CO (θ = 1.0) supports recent models of the (2×1)p1g1 overlayer. The isosteric heat of adsorption of CO is 160 ± 15 kJ mol?1 in the range 0.2?θ?0.5.  相似文献   

4.
The adsorption of potassium and the coadsorption of potassium and oxygen on the Pt(111) and stepped Pt(755) crystal surfaces were studied by AES, LEED, and TDS. Pure potassium adlayers were found by LEED to be hexagonally ordered on Pt(111) at coverages of θ = K0.9–;1. The monolayer coverage was 5.4 × 1014K atoms/cm2 (0.36 times the atomic density of the Pt(111) surface). Orientational reordering of the adlayers, similar to the behavior of noble gas phase transitions on metals, was observed. The heat of desorption of K decreased, due to depolarization effects, from 60 kcal/mole at θK <0.1, to 25 kcal/mole at θK = 1 on both Pt(111) and Pt(755). Exposure to oxygen thermally stabilizes a potassium monolayer, increasing the heat of desorption from 25 to 50 kcal/mole. Both potassium and oxygen were found to desorb simultaneously indicating strong interactions in the adsorbed overlayer. LEED results on Pt(111) further indicate that a planar K2O layer may be formed by annealing coadsorbed potassium and oxygen to 750 K.  相似文献   

5.
《Surface science》1988,202(3):L555-L558
The absolute surface coverages of CO and O on Pd(110) have been measured by nuclear reaction analysis (NRA) using the 12C(d, p)13C and 16O(d, p1)17O1 reactions. The CO coverages of the (2 × 1) and (4 × 2) phases of CO on Pd(110) are 1.00 ±0.05 and 0.73 ±0.05 ML (1 ML = 1 monolayer = 9.4 × 1014 CO molecules cm−2) respectively. The oxygen coverage in the c(4 × 2) phase of O on Pd(110) is 0.50 ±0.05 ML.  相似文献   

6.
High-resolution vibrational electron energy-loss spectra of CO on an Ni(110) surface were studied at 300 K with the in-situ combination of LEED, Auger electron spectroscopy and work-function change measurement. The observed peaks are at 436 cm?1, 1855 cm?1 (shifting to 1944 cm?1 with increasing coverage) and at 1960 cm?1 (shifting to 2016 cm?1 with increasing coverage). The experimental results indicate that CO is adsorbed non-dissociatively at all coverages. Three adsorbed states of CO have been found. At fractional CO coverages less than θ ~ 0.9 where the disordered adsorbed structure dominates, CO is adsorbed in two inequivalent sites (short- and long-bridge sites) at random with its axis oriented perpendicular to the surface. At high coverages (θ > 0.9) where the (2 × 1) structure develops, our results indicate that the adsorbed CO molecules may occupy the distorted long-bridge sites forming zig-zag chains which lie essentially in the troughs of the (110) surface.  相似文献   

7.
The kinetics of the desorption of CO from a Pt(111) crystal between 419 and 505 K is reported using a Low-Energy Molecular-Beam-Scattering (LEMS) technique with a helium probe beam and a CO dosing beam. The resulting first-order Arrhenius rate constant is k = 2.7 × 1013exp(?31.1 kcalmole · RT) s?1. We also report a study of the equilibriumadsorbed CO between 400 and 600 K using LEMS. These results, fitted to a Temkin isotherm model, indicate that the adsorption energy decreases linearly with surface coverage with the average value equal to 31.1 + 1.2 kcalmole over the coverage range 0 < θ ? 0.5. The average harmonic oscillator frequency of the adsorbed CO molecules is 191 ± 76 cm?1.  相似文献   

8.
Adsorption of NO and O2 on Rh(111) has been studied by TPD and XPS. Both gases adsorb molecularly at 120 K. At low coverages (θNO < 0.3) NO dissociates completely upon heating to form N2 and O2 which have peak desorption temperatures at 710 and 1310 K., respectively. At higher NO coverages NO desorbs at 455 K and a new N2 state obeying first order kinetics appears at 470 K. At saturation, 55% of the adsorbed NO decomposes. Preadsorbed oxygen inhibits NO decomposition and produces new N2 and NO desorption states, both at 400 K. The saturation coverage of NO on Rh(111) is approximately 0.67 of the surface atom density. Oxygen on Rh(111) has two strongly bound states with peak temperatures of 840 and 1125 K with a saturation coverage ratio of 1:2. Desorption parameters for the 1125 peak vary strongly with coverage and, assuming second-order kinetics, yield an activation energy of 85 ± 5 kcalmol and a pre-exponential factor of 2.0 cm2 s?1 in the limit of zero coverage. A molecular state desorbing at 150 K and the 840 K state fill concurrently. The saturation coverage of atomic oxygen on Rh(111) is approximately 0.83 times the surface atom density. The behavior of NO on Rh and Pt low index planes is compared.  相似文献   

9.
The adsorption of carbon monoxide on Pt(111) was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy. Two CO on-top signals at 2110 cm? 1 and 2097 cm? 1 have been detected under continuous CO exposure in a pressure range from 10? 7 to 100 mbar and at temperatures between 200 K and 300 K. The formation of the higher wavenumber signal is found to be kinetically limited below 200 K and by the presence of a stable c(4 × 2) adlayer in UHV. On the basis of the results presented in this study and previous experimental findings the two on-top signals are related to different CO compression layers on Pt(111) with θ > 0.5, hexagonal Moiré lattices and rectangular coincident site lattices.  相似文献   

10.
The absolute coverage (θ) of deuterium adsorbed on Pt(111) in the ranges 180< T<440 K and 5 × 10?6 < P < 5 × 10?2 Pa D2 has been determined by nuclear microanalysis using the D(3He, p)4He reaction. From these data, the isosteric heat of adsorption (Ea) has been determined to be 67 ± 7 kJ mol?1 at θ ? 0.3. This heat of adsorption yields values of the pre-exponential for desorption (10?5 to 10?2 cm2 atom?1 s?1) that lie much closer to the normal range for a second order process than those determined from previous isosteric heat measurements. The Ea versus θ relationship indicates that the adsorbed D atoms are mobile and that there is a repulsive interaction of 6–8 kJ mol?1 at nearest neighbour distances. At 300 K the coverage decreases to ? 0.05 monolayer (? 8 × 1013 D atoms cm?2) as P→ 0, apparently invalidating a recent model of site exchange in the adsorbed layer.  相似文献   

11.
Reflection-adsorption infrared spectroscopy has been combined with thermal desorption and surface stoichiometry measurements to study the structure of CO chemisorbed on a {111}- oriented platinum ribbon under uhv conditions. Desorption spectra show a single peak at coverages > 1014 molecules cm?2, with the desorption energy decreasing with increasing coverage up to 0.4 of a monolayer, and then remaining constant at ≈135 kJ mol?1 until saturation. The “saturation” coverage at 300 K is 7 × 1014 molecules cm?2, and no new low temperatures state is formed after adsorption at 120 K. Infrared spectra show a single very intense, sharp band over the spectral range investigated (1500 to 2100 cm?1), which first appears at low coverages at 2065 cm?1 and shifts continuously with increasing coverage to 2101 cm?1 at 7 × 1014 molecules cm?2. The halfwidth of the band at 2101 cm?1 is 9.0 cm?1, independent of temperature and only slightly dependent on coverage. The band intensity does not increase uniformly with increasing coverage, and hysteresis is observed between adsorption and desorption sequences in the variation of both the band intensity and frequency as a function of coverage. The frequency shift and the virtual invariance of the absorption band halfwidt with increasing coverage (Jespite recent LEED evidence for overlayer compression in this system) are attributed to strong dipole-dipole coupling in the overlayer.  相似文献   

12.
The adsorption and desorption of the system CO/Pt(111) and C6H6/Pt(111) at 300 K has been investigated with a pulsed molecular beam method in combination with a microcalorimeter. For benzene the sticking probability has been measured in dependence of the coverage θ. For coverages θ > 0.8 transient adsorption is observed. From an analysis of the time-dependence of the molecular beam pulses the rate constant for desorption is determined to be 5.6 s? 1. With a precursor-mediated kinetic adsorption model this allows to obtain also the hopping rate constant of 95.5 s? 1. The measured adsorption enthalpies could be best described by (199 ? 77θ ? 51θ2) kJ/mol, in good agreement with the literature values. For CO on Pt(111) also transient adsorption has been observed for θ > 0.95 at 300 K. The kinetic analysis yields rate constants for desorption and hopping of 20 s?1 and 51 s?1, respectively. The heats of adsorption show a linear dependence on coverage (131 ? 38θ) kJ/mol between 0  θ  0.3, which is consistent with the desorption data from the literature. For higher coverage (up to θ = 0.9ML) a slope of ?63 kJ/mol describes the decrease of the differential heat of adsorption best. This result is only compatible with desorption experiments, if the pre-exponential factor decreases strongly at higher coverage. We found good agreement with recent quantum chemical calculations made for (θ = 0.5ML).  相似文献   

13.
CO adsorption on Pt(111) and vicinal Pt(111) surfaces has been studied by means of work function variation and He scattering measurements. AES and LEED were used mainly for correlations with other work. Special attention has been paid to the low coverage regime (θco < 0.1) with emphasis on surface structural dependencies. The minimum of the work function versus CO exposure curve occurs at a coverage less than 11% on “kink-free” surfaces. This is much lower than the hitherto commonly accepted value of 33%, and does not relate to any observed LEED superstructure. The value of Δφmin depends strongly on the surface structure. For an “ideal” Pt(111) surface with a step density less than 10?3 at a temperature of 300 K, Δφmin = ?240 meV. The scattering cross section Σ of CO adsorbed on Pt(111) for 63 meV He is typically > 250 Å2, i.e. much larger than expected from the Van der Waals radii of He and CO. For two nominal Pt(111) surfaces with step densities of 10?2 and less than 10?3, respectively, the measured Σ values varied by a factor of three. This can be explained by preferential CO occupation of defect sites, which are already not “seen” by thermal helium. By comparing results on a stepped (997) and a kinked (12 11 9) Pt surface with similar defect densities, the kinks are proven to play a decisive role. They probably form saddles in the recently proposed activation barrier for migration between terrace and step sites.  相似文献   

14.
Oxygen adsorption on the Pt(100) and Pt(111) surfaces was investigated using X-ray photo-emission and thermal desorption spectroscopies. Low pressure (ca. 10?5 Pa) oxygen dosing at near ambient crystal temperature resulted in the formation of dissociated adsorbed species at saturation coverages of nominally 0.2–0.25 monolayer on both surfaces. The combination of higher pressure (ca. 10?3 Pa) and higher surface temperature (570 K) dosing produced a three to five times higher saturation coverage than the low pressure dosing. The effect of dosing condition on the saturation coverage appears to reconcile apparent discrepancies for the Pt(100) surface in the literature. Characterization by XPS of the higher coverage state for oxygen showed that it is in the same chemical state as the oxygen adsorbed at very low coverage. Angle-resolved XPS has shown that in all cases the oxygen appears to reside on the surface with no significant penetration of oxygen into the bulk, as would be characteristic of oxidation. However, some penetration on the surface by oxygen, such as by a place-exchange type restructuring of the first two atomic layers, cannot be entirely ruled out.  相似文献   

15.
The binding states and sticking coefficients of CO and H2 on clean and oxide covered (111)Pt are examined using flash desorption mass spectrometry and Auger electron spectroscopy (AES). On the clean surface at 78 K there is one major binding state of CO with a desorption activation energy which decreases with coverage plus a second smaller state, while H2 exhibits three binding states with peak temperatures of 140, 230 and 310 K and saturation density ratios of 0.5 : 1 : 1. Desorption kinetics of CO are consistent with a first order state with a normal pre-exponential factor of 1013 ± 1 sec?1, while all three peaks of H2 are broader than expected. Interpretations in terms of anomalous pre-exponential factors, coverage dependent desorption activation energies, and desorption orders are considered. On the oxidized surface saturation densities of both gases are nearly identical to those on the clean surface, but desorption temperatures are increased significantly and the initial sticking coefficient on the oxide decreases slightly for CO and increases slightly for H2.  相似文献   

16.
CH3NC adsorption and thermal decomposition on a Pt(111) surface has been studied by high resolution EEL and TD spectroscopies. At 90 K, CH3NC adsorbs initially in a terminal-bonded configuration characterized by a blue-shifted iso-cyanide stretch at 2265-2240 cm?1. At higher coverages this form co-exists with a second form characterized by an imine-like stretch at 1600–1770 cm?1, increasing with coverage. This form is associated with bridge bonding to adjacent surface platinum atoms. Adsorption is irreversible and. except for multilayer desorption at 135 K, only reaction-limited H2 (Tp = 440–460 K) andHCN (Tp = 420–610 K) desorption and. at high coverages, isomerization to CH3CN (Tp = 430 K) was seen. EEL spectra recorded after heating the adsorbed layer indicated that at lower coverages, the molecular integrity of the adsorbed CH3NC was completely lost before dehydrogenation occurred. On the other hand, at saturation structural changes in the adsorbed layer corresponded firstly to the onset of dehydrogenation and then. at higher temperatures, to HCN evolution. No spectroscopic evidence for an η2-bonding configuration was found either at low temperatures or during thermal decomposition. The terminal- and bridged-bonded configurations adopted by CH3NC have been compared and contrasted with those found with the isoelectronic CO and the isomeric CH3CN by reference to the chemically important frontier orbitals of these ligand molecules.  相似文献   

17.
《Surface science》1986,175(2):313-324
The adsorption of oxygen on Ni(110) was investigated by nuclear reaction analysis (NRA), XPS, Δφ, temperature programmed reaction spectroscopy (TPRS) and LEED. At 423 K, (3 × 1), (2 ×1) and (3 ×1) phases are formed in sequence with increasing O2 exposure. The coverage in the (2 ×1) phase was determined by NRA, the coverages in the other phases being determined via this calibration by XPS, TPRS and Δφ. Contrary to previous reports, the maximum in the intensity of half-order beams from the (2 × 1) phase is associated with a coverage of (5.6 ± 0.5) × 1014 O atoms cm−2 or 0.49 ± 0.05 monolayers, and not 0.25 monolayers. The two (3 ×1) phases are associated with θ = 0.33 ± 0.03 and 0.64 ± 0.06 monolayers respectively. Oxygen adsorbed at 295 K is not at thermodynamic equilibrium. Annealing to T > 400 K causes significant decreases in Δφ and the formation of the (2 ×1) phase for θ > 0.3.  相似文献   

18.
Auger electron spectra have been recorded when oxygen is adsorbed on a Ni(111) single crystal surface. For the coverage range θ < 1, an analysis of the plot of the peak to peak height (H) of the oxygen KVV (516 eV) transition versus the total number of molecules cm2? impinging on the surface (molecular beam dosing) shows agreement with the kinetic mechanism proposed by Morgan and King [Surface Sci. 23 (1970) 259] for the adsorption of oxygen on polycrystalline nickel films. In this coverage range, no energy shifts of the nickel or oxygen Auger peaks were recorded.At coverages θ > 1 (standard dosing procedure) shifts in the valence spectra M2, 3VV (61 eV) and L3M2, 3V (782 eV) of ?2.3 eV and ?1.8eV respectively are recorded at 1.4 × 10?2 torr-sec. Up to these coverages no shift of the L3VV transition (849 eV) is observed. A chemical shift of ?2.1 eV is recorded in the L3M2, 3M2, 3 Auger transition (716 eV) at 1.4 × 10?2 torr-sec.In the coverage range θ > 1, shifts in the energy of the oxygen Auger peaks are observed. At 5.8 × 10?3 torr-sec. the KVV (516 eV) and KL1V (495.2 ± 0.3 eV) transitions show shifts of ?1.5 eV and ?(1.0 ±0.3) eV respectively. No shift up to this coverage is recorded in the KL1L1 (480.6 ± 0.3 eV) transition.  相似文献   

19.
The chemisorption of CO on the clean, unreconstructed Pt(100)-1 × 1 surface was investigated by LEED and XPS. Three LEED patterns, c(2 × 2), (√2 × 3√2) R45° and c(4 × 2), were observed with increasing CO exposure and structure models corresponding to these LEED patterns were proposed. The absolute coverage of CO was determined by combining the O(1s) XPS data with coverage information derived from LEED. The maximum CO coverage thus obtained was θ = 0.75 and the initial sticking coefficient was determined to be s0 = 0.6. This coverage calibration can also be utilized for other oxygen containing molecules by comparing the corresponding O(1s)it peak intensities.  相似文献   

20.
The diffusion of 1H and 2H on the (111) plane of a W field emitter has been studied by the fluctuation method at various coverages. Both activated and unactivated diffusion is observed; the latter shows very little isotope effect, suggesting that coupling to the substrate is so strong that mass renormalization makes the effective masses of 1H and 2H nearly identical. Values of D in the tunneling, i.e. temperature independent, regime are 10?13?5 × 10?14 cm2/s depending on coverage. For activated diffusion at high coverages, corresponding to population of the β1 state E = 2.4?3.2 kcal/mol and D0 = 2 × 10?8 ?5 × 10?7 cm2/s, depending on coverage. For lower coverages, corresponding to β2 population, E = 7–9 kcal/mol, D0 = 9 × 10?6 ?2 × 10?3 cm2/s, again depending on coverage. Similar values are obtained for 2H, with E and D0 values slightly reduced. An exponentially decaying correlation signal for clean W was also seen and interpreted in terms of flip-flop of W atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号