首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field evaporation of silver and field desorption of silver surface compounds were investigated by analysing positive ions with a mass spectrometer. In particular, the well known adsorption states of oxygen, and further the interactions of H2O, NH3, H2, CO and CH4 were measured in the field ion mass spectrometer under steady state fields of > 0.1 V/Å with a sensitivity of < 0.1 ions s?1 and at temperatures between 80 °K and 425 °K. Although oxygen is usually chemisorbed at Ag surfaces, no AgO+, AgO+2 or other Ag-O compounds could be detected as positive ions, Ag+ and O2+ are the only observed ions at best image fields in oxygen up to fields of field evaporation of Ag+(≈ 2.2 V/Å). Even after the actual adsorption of oxygen with zero-field (6 × 105 Langmuir at 10?3 Torr) at 323 °K and 473 °K and subsequent application of the desorption field at 210°K no silver-oxygen compounds were found in positive ionic form. Small quantities of AgO+ and AgO+2 were only formed — besides Ag(H2O)x+ complexes — if atomic oxygen was supplied by the field induced dissociation of water.Gases which do not adsorb on silver under zero-field conditions (H2, CO, CH4, N2) yield the ions Ag(H2)n, Ag(CO)n+, n=1, 2; AgCH4+, AgN2+. The situation with H2O and NH3 is more complicated: Molecular ions [Ag(H2O)n]+·mH2O, n=1,…, 4, m=1,…, 8 and [Ag(NH3)n]+·mNH3, n=1, 2, m=1,…, 6 are found besides Ag+.From the temperature and field dependence conclusions are drawn about the mechanisms of evaporation and formation of ionic surface complexes. The activation energies of evaporation of Ag+ are found to depend on the square root of the field strength. In general, the generation of surface compounds can be described by field induced reactions rather than usual gas adsorption.  相似文献   

2.
本文利用266 nm波长的激光及程序升温脱附的方法研究了甲醇在ZnO(0001)表面的光催化反应. TPD结果显示部分的CH3OH以分子的形式吸附在ZnO(0001)表面,而另外一部分在表面发生了解离. 实验过程中探测到H2,CH3·,H2O,CO,CH2O,CO2和CH3OH这些热反应产物. 紫外激光照射实验结果表明光照可以促进CH3OH/CH3O·解离形成CH2O,在程序升温或光照的过程中它又可以转变为HCOO-. CH2OHZn与OHad反应在Zn位点上形成H2O分子. 升温或光照都能促进CH3O·转变为CH3·. 该研究对CH3OH在ZnO(0001)表面的光催化反应机理提供了一个新的见解.  相似文献   

3.
Kinetic study has been performed to understand the reactivity of novel cationic gemini surfactants viz. alkanediyl‐α,ω‐bis(hydroxyethylmethylhexadecylammonium bromide) C16‐s‐C16 MEA, 2Br? (where s = 4, 6) in the cleavage of p‐nitrophenyl benzoate (PNPB). Novel cationic gemini C16‐s‐C16 MEA, 2Br? surfactants are efficient in promoting PNPB cleavage in presence of butane 2,3‐dione monoximate and N‐phenylbenzohydroxamate ions. Model calculation revealed that the higher catalytic effect of ethanol moiety of gemini surfactants (C16H33N+ C2H4OH CH3 (CH2)S N+ C2H4OH CH3C16H33, 2Br?, s = 4, 6) is due to their higher binding capacity toward substrate. This is in line with finding that binding constants for novel series of cationic gemini surfactants are higher than conventional cationic gemini (C16H33N+(CH3)2(CH2)SN+(CH3)2C16H33, 2Br?, s = 10, 12), cetyldimethylethanolammonium bromide and zwitterionic surfactants, i.e. CnH2n+1N+Me2 (CH2)3 SO3? (n = 10; SB3‐10). The fitting of kinetic data was analyzed by the pseudophase model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Thermal desorption spectrometry (TDS) and electron stimulated desorption (ESD) are employed to investigate mechanisms responsible for the formation of C2H6 in electron irradiated multilayer films of acetonitrile (CH3CN) at 30 K. Using a high sensitivity time-of-flight mass spectrometer, we observe the ESD of anionic fragments H, CH2 , CH3 and CN. Desorption occurs following dissociative electron attachment (DEA) via several negative ion resonances in the 6 to 14 eV energy range and correlates well with a “resonant” structure seen in the TDS yield of C2H6 (i.e., at mass 30 amu). It is proposed that C2H6 is formed by the reactions of CH3 radicals generated following DEA to CH3CN which also yields CN. Between 2 and 5 eV, a second resonant feature is seen in the C2H6 signal. While DEA is observed in the gas phase at these energies, no anion desorption occurs since anionic fragments likely have insufficient kinetic energy to desorb. Since the CH2 ion has not been observed in gas-phase measurements, we propose that it is formed, along with HCN (that is detected in TDS) when dissociation into CH3 and CN is hindered by adjacent molecules.  相似文献   

5.
Surface ions generated by electron stimulated desorption from mass spectrometer ion source grids are frequently observed, but often misidentified. For example, in the case of mass 19, the source is often assumed to be surface fluorine, but since the metal oxide on grid surfaces has been shown to form water and hydroxides, a more compelling case can be made for the formation of hydronium. Further, fluorine is strongly electronegative, so it is rarely generated as a positive ion. A commonly used metal for ion source grids is 316L stainless steel. Thermal vacuum processing by bakeout or radiation heating from the filament typically alters the surface composition to predominantly Cr2O3. X-ray photoelectron spectral shoulders on the O 1s and Cr 2p3/2 peaks can be attributed to adsorbed water and hydroxides, the intensity of which can be substantially increased by hydrogen dosing. On the other hand, the sub-peak intensities are substantially reduced by heating and/or by electron bombardment. Electron bombardment diode measurements show an initial work function increase corresponding to predominant hydrogen desorption (H2) and a subsequent work function decrease corresponding to predominant oxygen desorption (CO). The fraction of hydroxide concentration on the surface was determined from X-ray photoelectron spectroscopy and from the deconvolution of temperature desorption spectra. Electron stimulated desorption yields from the surface show unambiguous H3O+ peaks that can be significantly increased by hydrogen dosing. Time of flight secondary ion mass spectrometry sputter yields show small signals of H3O+, as well as its constituents (H+, O+ and OH+) and a small amount of fluorine as F, but no F+ or F+ complexes (HF+, etc.). An electron stimulated desorption cross-section of σ+ ∼ 1.4 × 10−20 cm2 was determined for H3O+ from 316L stainless steel for hydrogen residing in surface chromium hydroxide.  相似文献   

6.
The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2+, C3H6O+, C3H5O+, C2H5O+, C2H4O+, C2H3O+, C3H5+, CH3O+, C2H6+, C2H5+/CHO+, C2H4+ and CH3+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.  相似文献   

7.
本文利用量子化学计算方法,研究了甲胺和水复合离子团簇[(CH3NH2)(H2O)n]+的几何结构、能量和红外光谱,揭示了结构生长模型、氢键作用机制和质子转移机理. 研究结果表明,在[(CH3NH2)(H2O)n]+团簇中,甲胺甲基上的一个氢原子转移到氨基上,形成分子内质子转移的CH2NH3+离子核心结构模型,水分子作为氢键受体,与质子化氨基NH3+形成氢键. CH3NH2+离子核心结构模型没有CH2NH3+离子核心结构模型稳定. 在团簇的红外光谱中,CH振动、自由NH振动、氢键结合的NH振动和OH振动模式在CH3NH2+和CH2NH3+两种离子核心结构模型的理论计算红外光谱中明显不同,因此可用于鉴别甲胺水合离子团簇的结构模型,有助于理解甲胺和水复合团簇的氢键网络结构.  相似文献   

8.
After measuring the linear infrared absorption spectrum of the coadsorbate, selective desorption of CH3F from the binary coadsorbate C2H6CH3FNaCl under ultrahigh vacuum conditions at 12o K stimulated by resonant CO2 laser pulses of small fluence ~ 0.1 J·cmt?2 has been carried out. No desorption of ethane, which is slightly more volatile, but has no significant infrared absorption at the laser frequency, was observed. The primary activation step is the resonant multiphoton excitation of the most intense internal CH3FNaCl adsorbate vibration, the CF stretching mode ν3. The substance separation seems to indicate high localisation of the activation in this desorption and could be of interest for applications.  相似文献   

9.
Absolute cross-sections for electron-impact dissociative ionization of C2 H2+ and C2 D2+ to CH+, C+, C2+ , H+, CH2+ and C2D+ fragments are determined for electron energies ranging from the corresponding threshold to 2.5 keV. Results obtained in a crossed beams experiment are analyzed to estimate the contribution of dissociative ionization to each fragment formation. The dissociative ionization cross sections are seen to decrease for more than an order of magnitude, from CH+ (5.37±0.10) × 10-17 cm2 over C+ (4.19± 0.16) × 10-17 cm2, C2D+ (3.94±0.38) × 10-17 cm2, C2+ (3.82±0.15) × 10-17 cm2 and H+ (3.37±0.21) × 10-17 cm2 to CH2+ (2.66±0.14) × 10-18 cm2. Kinetic energy release distributions of fragment ions are also determined from the analysis of the product velocity distribution. Cross section values, threshold energies and kinetic energies are compared with the data available from the literature. Conforming to the scheme used in the study of the dissociative excitation of C2H2+ ( C2 D2+ )\left( {\rm C}_2 {\rm D}_2^+ \right), the cross-sections are presented in a format suitable for their implementation in plasma simulation codes.  相似文献   

10.
测量了Tm3+离子不同浓度(0.5at.%, 3 at.%, 5 at.%)掺杂的NaY(WO4)2晶体在800nm激光二极管激发下的上转换发射光谱.结合吸收谱、荧光谱和由Judd-Ofelt理论计算的光谱参数,详细分析了Tm3+:NaY(WO4)2晶体中上转换能量传递机理和离子浓度对上转换发射的影响.讨论了四种影响上转换发光效率的离子间相互作用机理:3H5+1G43H6+1D23H5+3H53H6+3F31G4+3H63F4+3F31G4+3H63F3+3F4,并根据Miyakawa-Dexter理论定量计算了各过程的发生概率.论证了交叉弛豫和共协上转换等浓度猝灭效应是影响Tm3+离子蓝色上转换荧光发射效率的主要因素. 关键词: 3+离子')" href="#">Tm3+离子 4)2晶体')" href="#">NaY(WO4)2晶体 上转换 浓度猝灭  相似文献   

11.
The structures of proton solvates in the HCl-H2O-(CH3)2NCHO (DMFA) system at H2O: DMFA ratios ranging from 1: 1 to 21: 1 are studied by the IR spectroscopy method. It is demonstrated that H2O?H+?OH2 ions and (CH3)2NCHO?H+?OH2 mixed solvates with a strong quasi-symmetrical hydrogen bond are formed in solutions. With an increase in the DMFA concentration, the fraction of H5O 2 + ions decreases. At HCl: H2O ≥ 1: 3 and arbitrary DMFA concentrations, only mixed proton solvates are formed. The continuous absorption coefficients for the (CH3)2NCHO?H+?OH2 ions are determined. The results obtained are compared with the results of quantum-chemical calculations of the structure and relative stability of the (DMFA) m H+(H2O) n (m = 0–2, n = 0–3) positively charged complexes which were performed by the B3LYP/6-31++G(d,p) DFT method. We identified 19 stable configurations with chain, cyclic, and branched structures. Most of these configurations contain the (CH3)2NCHO?H+?OH2 fragment. The parameters of the O?H+?O bridge show that some configurations have a strong quasi-symmetrical hydrogen bond. In some cases, the proton is located between two DMFA molecules. The H2O?H+?OH2 bridge is observed in none of the stable configurations of the (DMFA) m H+(H2O) n (m ≠ 0) complexes.  相似文献   

12.
《Surface science》1986,167(1):101-126
The kinetics and mechanism of the decomposition of methanol (CH3OD) on oxygen-covered Pt(111) were studied using static secondary ion mass spectrometry (SIMS) and temperature programmed desorption (TPD). The initial sticking coefficient and the saturation first layer coverage of CH3OD are unity and 0.36 ML, respectively. The maximum amounts decomposed in TPD on O/Pt(111) and clean Pt(111) are 0.19 and 0.047 ML, respectively. At low methanol coverages (< 0.05 ML) on O/Pt(111) the only reaction products were CO2, H2O and D2O, whereas at saturation CO, H2O, D2O and H2 were observed. The decomposed amount did not saturate at or before the onset of molecular methanol desorption, but increeased monotonically until saturation of the first layer. No oxygen exchange was observed between CH3OD and preadsorbed 18O. A decomposition mechanism involving methoxy and hydroxyl type species is proposed. Methanol coverages as low as 0.002 ML could be detected with SIMS. The CH3+ ion was the most intense ion in the positive SIMS spectrum of both methanol and methoxy. Larger ion clusters such as (CH3OD)n+ (n = 2, 3) developed successively at specific multilayer coverages. At low coverages on O/Pt(111), methoxy formation occurs above 125 K and its decomposition becomes detectable above 150 K during temperature programming. In the isothermal mode, the SIMS CH3+ ion was used to follow the kinetics. Over the temperature range 120–145 K, the second order Arrhenius rate parameters for methoxy formation are E = 5.5±0.7 kcal/mol and A = 1.5×10−7±0.6 cm2/s·molecule for an initial methanol coverage of 0.05 ML. Methoxy decomposition was studied in the temperature range 150–165 K and at an initial coverage of 0.015 ML. The first order kinetic parameters, E = 11.4±0.5 kcal/mol and A = 5.3×1013±1 s−1 were derived. Advantages and limitations of using SIMS as a tool for kinetic studies are discussed.  相似文献   

13.
《Surface science》1986,173(1):234-244
Electron-stimulated desorption (ESD) of positive ions (H+, O+, +OH, F+ and Cl+) from the Si- and C-terminated surfaces of hexagonal α-SiC has been observed for electron energies in the 5–105 eV range. Comparison of these results with those for the ESD of the same ions from the surfaces of Si and condensed hydrocarbons leads to a model for the H+, +OH, F+ and Cl+ threshold desorption process based on transitions from deep valence Si and C “s-like” levels to states in the conduction band, followed by Auger decay to form a localized multiple valence-hole configuration. O+ desorption, on the other hand, is initiated by O 2s ionization. Evidence is found for a strong dependence of the F+ threshold on the local chemical bonding. The results indicate that the thresholds for ESD of these ions from SiC are determined more by the electronic excitation of the substrate than by direct excitation of the adsorbate bond.  相似文献   

14.
The photoionization and dissociation photoionization of toluene have been studied using quantum chemistry methods.The geometries and frequencies of the reactants,transition states and products have been performed at B3LYP/6-311++G (d,p) level,and single-point energy calculations for all the stationary points were carried out at DFT calculations of the optimized structures with the G3B3 level.The ionization energies of toluene and the appearance energies for major fragment ions,C7H7+,C6H5+,C5H6+,C5H5+,are determined to be 8.90,11.15 or 11.03,12.72,13.69,16.28 eV,respectively,which are all in good agreement with published experimental data.With the help of available published experimental data and theoretical results,four dissociative photoionization channels have been proposed:C7H7++H,C6H5++CH3,C5H6++C2H2,C5H5++C2H2+H.Transition structures and intermediates for those isomerization processes are determined in this work.Especially,the structures of C5H6+ and C5H5+ produced by dissociative photoionization of toluene have been defined as chain structure in this work with theoretical calculations.  相似文献   

15.
We have investigated ion desorption from adsorbed methane following keV He+ ion irradiation. The thickness of the adsorbed layer was precisely controlled. For mono-layered methane, only monomer ions (CHx+) were desorbed by 1 keV He+ ion irradiation. On the other hand, a large number of cluster ions (CnHx+) up to n = 20 were desorbed from multi-layered film. Among cluster ions, molecular ions with CC bonds were found, which indicates that chemical bonds are newly formed by ion irradiation. Based on the results for thickness dependences of the mass spectral patterns, it was elucidated that the monomer ions are desorbed from the top surface layer through single electron excitation. While the cluster ions are formed mainly in the inside of the layers along the nuclear track due to the high-density electronic excitation, which is produced by nuclear collision between incident He+ ions and frozen molecules.  相似文献   

16.
Laser-ionization Time-Of-Flight (TOF) mass-spectrometric studies have been carried out on the 532 nm and 1064 nm laser ablation products from a nitrogen-rich polymer. The polymer used had an elemental composition of C6.0N8.9H3.4 and consisted of C=N, C-N, and N-H chemical bonds. The TOF mass spectra observed were composed of various peaks (150 amu) depending on the ablation laser wavelength. The primary peaks were assigned to C+, CN+, CHnN+ 2 (n=1–3) and C2H2N+ 3 for 532 nm ablation, and C+, C+ 3, HCN+, HCCN+, CH2NH+, HNCN+, H3NCN+, and C4H4N+ 7 for 1064 nm ablation. The flight velocity distributions with peak velocities ranging from 8.6×103 cm/s to 3.8×104 cm/s were measured for these products. The distinct velocity distributions observed between small and large products indicate the presence of two origins in the fragment ejection process from the polymer for both 532 nm and 1064 nm ablation. Furthermore, we suggest an importance of the translational energy of the fragments for the product generation in the laser plume.  相似文献   

17.
The temporal variation of chemiluminescence emission from OH?(A2 Σ +) and CH?(A2 Δ) in reacting Ar-diluted H2/O2/CH4, C2H2/O2 and C2H2/N2O mixtures was studied in a shock tube for a wide temperature range at atmospheric pressures and various equivalence ratios. Time-resolved emission measurements were used to evaluate the relative importance of different reaction pathways. The main formation channel for OH? in hydrocarbon combustion was studied with CH4 as benchmark fuel. Three reaction pathways leading to CH? were studied with C2H2 as fuel. Based on well-validated ground-state chemistry models from literature, sub-mechanisms for OH? and CH? were developed. For the main OH?-forming reaction CH+O2=OH?+CO, a rate coefficient of k 2=(8.0±2.6)×1010 cm3?mol?1?s?1 was determined. For CH? formation, best agreement was achieved when incorporating reactions C2+OH=CH?+CO (k 5=2.0×1014 cm3?mol?1?s?1) and C2H+O=CH?+CO (k 6=3.6×1012exp(?10.9 kJ?mol?1/RT) cm3?mol?1?s?1) and neglecting the C2H+O2=CH?+CO2 reaction.  相似文献   

18.
In this work the deexcitation of the B3Π+(Ou+), v′ = 14 level of I2 after pulsed laser excitation has been studied. The quenching cross sections by collisions with I2, H2, CO, and CH4 have been measured. The experimental results are 190 ± 14, 2.5 ± 0.3, 15.1 ± 0.4, and 18.0 ± 0.6 Å2, respectively. These values are compatible (within 30%) with the semiempirical scaling law of proportionality with the product of polarizability and the square root of reduced mass.  相似文献   

19.
Spatially resolved optical emission spectroscopy (SR-OES) was used to investigate microwave activated H2/Ar/CH4 plasma under conditions of the electron cyclotron resonance (ECR). The chemistry and composition of the gas phase were studied using self-designed fibre-optic system with echelle type spectrometer during CVD deposition of polycrystalline diamond. One-dimensional intensity profiles of the main species were collected along the vertical axis of chamber. The dominant species in the flux, originating from excited hydrogen and hydrocarbons, were identified as H, H+, CH and CH+; they are crucial for the diamond deposition process. The effect of ECR on the spatial distribution of H2 and CH4 dissociation profiles was studied in depth. The influence of processing parameters (gas flow rates, input power, pressure and magnetic field level) on species excitation as a function of the distance above substrate was asessed. The obtained data can be used for the ECR system optimization.  相似文献   

20.
ABSTRACT

Interactions of cycloheptatriene derivatives, C7H6X, (X?=?NH, PH, AsH, O, S, Se) with the cations H+, CH3+, Cu+, Al+, Li+, Na+, and K+ are studied using B3LYP functional and 6-311++G(d,p) basis set. The calculated gas-phase cation affinities (CA) and cation basicities (CB) for all molecules decrease as H+ > CH3+ > Cu+ > Al+ > Li+ > Na+ > K+. We used the induced aromaticity in the 7-membered ring of C7H6X upon interaction with the cations, M+, as a measure of C7H6X/M+ interaction. Nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) were used as two indices of aromaticity. The highest and lowest induced aromaticities were observed for interactions of H+ and K+, respectively. Also, the aromaticity induced by interaction with a cation in C7H6AsH and C7H6PH was larger than that in C7H6NH and C7H6O. Hence, the aromaticity was considered as a measure of covalency for the C7H6X/M+ interactions showing a rational dependence on both the molecule and cation. The nature of the interactions was also assessed using electron density, charge distribution analysis and NBO calculations. The results of the aromaticity indices, NICS and HOMA, were compared with the electron density and NBO results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号