首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The desorption of Cs and Na atoms from the corresponding layers applied to a gold film deposited on textured tungsten ribbon with a preferred orientation of the (100) surface is studied by thermal desorption spectroscopy with the products of thermal desorption scanned on a pulsed time-of-flight mass spectrometer. The Cs atoms evaporated at T = 300 K are desorbed by two phases, one of which can be identified with the filling of a monolayer and the other can be attributed to the formation of the CsAu compound. The Na atoms evaporated at T = 300 K are desorbed by three phases associated with the formation of a monolayer coating, a sodium compound of with gold, and a multilayer sodium film.  相似文献   

2.
The attenuation of 660 MHz surface acoustic waves propagating in a thin film of Nb3Sn 5000 Å thick has been measured as a function of temperature from 4.2 K to 16 K. The A 15 Nb3Sn, electron-beam codeposited on YZ lithium niobate and annealed at 700°C, was studied using 5.1 μm wavelength interdigital electrodes. The film revealed a transition temperature of 14.2 ± 0.1 K and using the BCS theory, an energy gap 2Δ(0) = 3.5 kBTc.  相似文献   

3.
《Surface science》1986,175(1):141-156
High resolution heat capacity measurements of multilayer methane adsorbed on graphite are presented and analyzed. The evidence indicates the presence of two wetting transitions: a first-order dewetting transition at Tw = 90.48 K, and a continuous wetting transition at the triple point, Tt = 90.66 K. This behavior is to be expected in connection with the melting transition in any system where both solid and liquid wet the surface. Heat capacity measurements can provide a valuable diagnostic tool for the wetting behavior of films too thick to be investigated by other means. In the thin film limit, we find that the latent heat of melting vanishes at about 4 layers.  相似文献   

4.
The interaction of thin (<1 nm) samarium films deposited on a textured iridium ribbon has been investigated by thermal desorption spectrometry. Samarium atoms deposited at T = 300 K desorb in three phases associated with the formation of a submonolayer samarium coverage on iridium, a compound of samarium with iridium, and a multilayer samarium film. The interaction with oxygen leads to the appearance of a new desorption phase, which is associated with the formation of samarium oxide. Oxidation of samarium is observed during exposure in oxygen already at room temperature. An increase in temperature of the iridium ribbon, at which exposure in oxygen occurs, to T = 1100 K leads to the formation of the compound of samarium with iridium. Further, the film of the compound decomposes in the course of interaction with oxygen, and samarium oxide grows on the Ir surface.  相似文献   

5.
多层膜外退火方法制备MgB2超导薄膜   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了利用电子束蒸发的Mg/B多层膜作为前驱体,然后退火制备MgB2薄膜的工作. 实验中发现,采用翻转膜面的退火处理方式可以有效地避免降温过程中Mg蒸气在薄膜表面形成的颗粒凝结,由此稳定地实现了面积为10 mm×10 mm,均匀、平整的超导薄膜的制备,Tc达35 K,转变宽度为0.8 K,在5 μm×5 μm的区域内薄膜的平均粗糙度小于10 nm. 为了便于后续器件制作过程中的微加工工艺,研究了膜厚小于1000 ?时薄膜的成相规律,发现当样品厚度减薄后,Tc会有明显降低. 通过调整前驱薄膜中的不同分层厚度,仍可实现转变温度达30 K以上、厚度约600 ?的MgB2薄膜,在20 K时的临界电流密度为2.4×106 A/cm2.  相似文献   

6.
《Surface science》1996,364(1):L511-L518
The effects of diffusion kinetics on surface roughness were investigated by measuring the dependence of surface width and step density on the amount of material removed for GaAs(110) sputtered at different temperatures (T). Surfaces after the removal of ten monolayers of material at 625 K were rougher on a small scale than those at 725 K, but they were smoother on a large scale. The increased large-scale roughness at high T was caused by increased diffusion on terraces and along step-edges, but insufficient cross-step transport. The high step-density created at low T enhanced cross-step transport. This mechanism, first proposed for the re-entrant layer-by-layer growth, is expected to cause the long-range roughness to increase with T for many solid surfaces after substantial sputtering or deposition over a certain range of T.  相似文献   

7.
Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for {110} facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tm, where Tm is the absolute melting temperature of tungsten (~3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m = 5, n = 8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on {310} regions.  相似文献   

8.
The adsorption and reaction of H2O on clean and oxygen precovered Ni(110) surfaces was studied by XPS from 100 to 520 K. At low temperature (T<150 K), a multilayer adsorption of H2O on the clean surface with nearly constant sticking coefficient was observed. The O 1s binding energy shifted with coverage from 533.5 to 534.4 eV. H2O adsorption on an oxygen precovered Ni(110) surface in the temperature range from 150 to 300 K leads to an O 1s double peak with maxima at 531.0 and 532.6 eV for T=150 K (530.8 and 532.8 eV at 300 K), proposed to be due to hydrogen bonded Oads… HOH species on the surface. For T>350 K, only one sharp peak at 530.0 eV binding energy was detected, due to a dissociation of H2O into Oads and H2. The s-shaped O 1s intensity-exposure curves are discussed on the basis of an autocatalytic process with a temperature dependent precursor state.  相似文献   

9.
The electron-stimulated desorption of Li+ ions from lithium layers adsorbed on the tantalum surface coated with a silicon film has been investigated. The measurements are performed using a static magnetic mass spectrometer equipped with an electric field-retarding energy analyzer. The threshold of the electron-stimulated desorption of lithium ions is close to the ionization energy of the Li 1s level. The secondary thresholds are observed at energies of about 130 and 150 eV. The threshold at an energy of 130 eV is approximately 30 eV higher than the ionization energy of the Si 2p level and can be associated with the double ionization. The threshold at 150 eV can be caused by the ionization of the Si 2s level. It is demonstrated that the yield of Li+ ions does not correlate with the silicon amount in near-the-surface region of the tantalum ribbon and drastically increases at high annealing temperatures. The dependence of the current of Li+ desorption on the lithium concentration upon annealing of the tantalum ribbon at T>1800 K exhibits two maxima. The ions desorbed by electrons with energies higher than 130 and 150 eV make the largest contribution to the current of lithium ions after the annealing. The yield of lithium ions upon ionization of the Li 1s level at an energy of 55 eV is considerably lesser, but it is observed at higher concentrations of deposited lithium. The results obtained can be interpreted in the framework of the Auger-stimulated desorption model with allowance made for relaxation of the local surface field.  相似文献   

10.
The magnetic susceptibility, electrical conductivity, and x-ray photoelectron and x-ray absorption spectra of defect lithium cobaltites of the general formula Li1 ? x CoO2 are investigated. It is found that, for lithium cobaltites with x > 0.25, the magnetic susceptibility increases abruptly and the conductivity type changes at T ~ 150 K. The assumption is made that the semiconductor-metal transition in defect lithium cobaltite is caused by the increase in the diffusion mobility of lithium ions with an increase in the temperature when there is a correlation between spatial distributions of lithium vacancies and “electron” holes.  相似文献   

11.
Ryutaro Souda 《Surface science》2011,605(7-8):793-798
We have investigated how the structures of vapor-deposited glassy films change with increasing temperature by using time-of-flight secondary ion mass spectrometry and ion scattering spectroscopy. It is found that intermixing of the topmost layer of an ethylbenzene film occur at temperature (~ 80 K) considerably lower than the glass transition temperature (Tg = 118 K) when the film is deposited at 20 K. This phenomenon can be interpreted as the occurrence of a two-dimensional liquid that diffuses into pores of the film, which is evidenced from comparison with surface diffusivity measurements using a porous silicon layer. For nonporous films deposited at higher temperatures, the molecules intermix gradually prior to the abrupt film morphology change at Tg. This phenomenon can be interpreted as decoupling between translational diffusivity and viscosity in the bulk. The film thickness has no significant effects on the evolution of supercooled liquid at Tg except for the monolayer film, whereas crystallization is quenched for the films thinner than 8 monolayers. The roles of the 2D liquid on the surface and an immobilized layer formed at the interface are discussed in finite-size effects on the glass-liquid transition and crystallization.  相似文献   

12.
This paper reports on a study of electron-stimulated desorption (ESD) of O+ and Li+ ions from titanium dioxide as a function of the preheating temperature T and of the concentration of lithium adsorbed at 300 K, which was carried out with a static magnetic mass spectrometer combined with a retarding-field energy analyzer. For T>1500 K, the TiO2 surface undergoes irreversible rearrangement. At temperatures from 300 to 900 K and at lithium coverages Θ<1, the ESD cross sections of the O+ and Li+ ions vary in a reversible manner with temperature, while for lithium coverages Θ>1, the changes in the Li+ and O+ ESD cross sections become irreversible. For θ<1, the appearance threshold of the Li+ and O+ ions is 25 eV, whereas for θ>1, the ESD threshold of Li+ ions shifts to 37 eV.  相似文献   

13.
《Infrared physics》1990,30(6):499-504
PbSnTe/PbTeSe heterojunctions grown by molecular epitaxy were investigated. Bulk generation-recombination and diffusion currents are shown to be dominant at T 30 K. The leakage current is presumably dominated by surface tunneling or by bulk defects in the depletion region at T < 30 K. Values of R′0A-products 0.8−6.25Ω cm2 at T = 77 K were obtained. When temperature decreases down to T = 4.2 K the R′0A product increases up approximately two orders.  相似文献   

14.
The propagation characteristics of the surface phonon in an amorphous film are theoretically investigated at low temperatures based on the tunneling-states model. It is shown that the attenuation rate of the surface phonon is proportional to ω tanh ?ω/2kBT and the relative velocity variation to ln (T/T0) for the thickness of the amorphous film comparable to or larger than the surface phonon wavelength. Below 3K, our result can well account for recent measurements of the relative velocity variation by Hartemann et al.  相似文献   

15.
La0.67Ca0.33MnO3 particle films with an average particle size of ~150 nm were grown on single-crystal silicon substrate using pulsed electron deposition technique and then focused ion beam was introduced to fabricate nanobridge in size of 300 × 900 nm on the particle film. The magneto-transport properties of both samples were studied. For the film, there is only one resistance peak at 182 K in temperature-dependent resistance (RT) curves, which is far lower than ferromagnetic–paramagnetic transition temperature (T C) of 250 K. When compared to the film, double peaks were observed in both RT curves and magnetoresistance dependent on temperature (MR–T) curves of the nanobridge, one peak is at 186 K, which is very close to metal–insulator transition temperature (T P) of film, the other one is at 250 K, which is close to the T C of film, and these two peaks caused separately by grain and grain boundary (GB), which demonstrated that the electrical transport behavior of grain was separated from that of GB.  相似文献   

16.
We have studied the motion of lithium ions in LixTiS2 (x = 0.33, 0.94) using pulsed NMR techniques. The temperature dependences of the spin lattice relaxation in the rotating frame (T1?) suggest comparable activation energies for lithium ion diffusion for both samples, 3370 K, but an appreciably longer hopping time for the x = 0.94 sample. Low temperature values of T2 agree with calculated and measured second moments for both materials.  相似文献   

17.
Bulk material of Nb3 (Ge0.8Nb0.2) with A15 structure and a superconducting transition temperature Tc of 6.5 K has been implanted with Ge, Si, Ar and O ions and subsequently annealed at high temperatures. After annealing between 700 and 750°C the Ge implanted samples showed a strong increase in Tc up to 16.2 K. With Si ions only a Tc of 13 K was obtained, with Ar and O ions Tc remained below 9 K. From X-ray measurements carried out on high Tc Ge implanted samples it could be concluded that the implanted surface layer grows up to a high degree epitaxially on the single crystallites of the bulk material. The lattice constant a0 of the implanted film was reduced by 0.02 Å with respect to the bulk material. This reduction in a0 is stronger than expected from the transition temperature of the implanted surface layer.  相似文献   

18.
The diffusion scattering method is used for studying a series of W/B4C multilayer structures with ultrashort periods (d = 0.8–1.5 nm). A simple theoretical model is described; the model takes into account both the dynamic effects in the interaction of counter-propagating diffuse-scattered waves and the mixing of film materials at the boundaries of the layers. It is shown that multilayer structures with a number of bilayers up to N = 700 and values of periods up to 0.8 nm are multilayer structures, which are well-correlated along the boundaries and exhibit resonance diffuse scattering. For structures with a period d > 1.1 nm, the largest contribution to the imperfection of boundaries comes not from the roughness, but from mixing of the films. The range of minimal periods of multilayer structures, for which the continuity of the films is preserved, is determined. The effect of “smoothing” of the substrate surface is discovered in multilayer structures with intact continuity; this contradicts to a certain extent the assumption concerning complete longitudinal correlation of roughnesses, which forms the basis of the theory.  相似文献   

19.
Thin films of eight metals with a thickness of 150 nm were deposited on mica substrates by thermal evaporation at various temperatures in a high vacuum. The surface morphology of the metal films was observed by atomic force microscopy (AFM) and the images were characterized quantitatively by a roughness analysis and a bearing analysis (surface height analysis). The films of Au, Ag, Cu, and Al with the high melting points were prepared at homologous temperatures T/Tm = 0.22-0.32, 0.40, and 0.56. The films of In, Sn, Bi, and Pb with the low melting points were prepared at T/Tm = 0.55-0.70, where T and Tm are the absolute temperatures of the mica substrate and the melting point of the metal, respectively. The surface morphology of these metal films was studied based on a structure zone model. The film surfaces of Au, Ag, and Cu prepared at the low temperatures (T/Tm = 0.22-0.24) consist of small round grains with diameters of 30-60 nm and heights of 2-7 nm. The surface heights of these metal films distribute randomly around the surface height at 0 nm and the morphology is caused by self-shadowing during the deposition. The grain size becomes large due to surface diffusion of adatoms and the film surfaces have individual characteristic morphology and roughnesses as T increases. The surface of the Al film becomes very smooth as T increases and the atomically smooth surface is obtained at T/Tm = 0.56-0.67 (250-350 °C). On the other hand, the atomically smooth surface of the Au film is obtained at T/Tm = 0.56 (473 ± 3 °C). The films of In, Sn, Bi, and Pb prepared at T/Tm = 0.55-0.70 also show the individual characteristic surface morphology.  相似文献   

20.
The relationship between soot surface growth, soot nanostructure and reactant temperature (Tr) in a coflow diffusion ethylene flame was investigated with multiple experimental techniques. The Tr was raised by heating the coflow air. Three cases, with 300K, 473K, and 673K Tr, respectively, were studied. Laser-induced Incandescence revealed that increasing Tr promotes soot formation. Although soot primary particle diameter (dp) also increases with Tr, the increase in dp slows down after 473K Tr, suggesting that there is a deceleration in soot surface growth. Transmission Electron Microscopy (TEM) imaging showed that increased Tr promotes soot aggregation and yields larger and more mature primary particles. The assessment of the Selected Area Electron Diffraction (SAED) patterns indicated that, at 673K Tr, there is a growth of lattice planes. Raman spectroscopy revealed further structural details. By assessing the band intensity ratios, soot for the Tr of 673K has more curved nanostructures. The deceleration of soot surface growth may be explained by surface aging, which is characterized by an increase in curved nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号