首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The initial stages of the interaction of oxygen with a Cr(110) surface have been investigated at 300 K by LEED, AES, electron energy loss spectroscopy (ELS), secondary electron emission spectroscopy (SES) and work-function change measurement (Δφ). In the exposure region up to 2 L, the clean-surface ELS peaks due to interband transition weakened and then disappeared, while the ~5.8 and 10 eV loss peaks attributed to the O 2p → Cr 3d transitions appeared, accompanied with a work-function increase (Δφ = +0.19 eV at2L). In the region 2–6 L the work function decreased to below the original clean-surface value (Δφmin = ?0.24 eV at6L), and five additional ELS peaks were observed at ~2, 4, 11, 20 and 32 eV: the 2 and 4 eV peaks are ascribed to the ligand-field d → d transitions of a Cr3+ ion, the 11 eV peak to the O 2p → Cr 4s transition, the 20 eV peak to the Cr 3d → 4p transition of a Cr3+ ion and the 32 eV peak probably to the Cr 3d → 4f transition. A new SES peak at 6.1 eV, being attributed to the final state for t he 11 eV ELS peak, was observed at above 3 L and identified as due to the unfilled Cr 4s state caused by charge transfer from Cr to oxygen sites in this region. In the region 6–15 L the work function increased again (Δφmax = +0.32 eV at15 L), the 33 and 46 eV Auger peaks due to respectively the M2,3(Cr)L2,3(O)L2,3(O) cross transition and the M2,3VV transition of the oxide appeared and the 26 eV ELS peak due to the O 2s → Cr 4s transition was also observed. Above 10 L, the ELS spectra were found to be practically the same as that of Cr2O3. Finally, above 15 L, the work function decreased slowly (Δφ = +0.13 eV at40L). From these results, the oxygen interaction with a Cr(110) surface can be classified into four different stages: (1) dissociative chemisorption stage up to 2 L, (2) incorporation of O adatoms into the Cr selvedge between 2–6 L, (3) rapid oxidation between 6–15 L leading to the formation of thin Cr2O3 film, and (4) slow thickening of Cr2O3 above 15 L. The change in the Cr 3p excitation spectrum during oxidation was also investigated. The oxide growth can be interpreted on the basis of a modified coupled current approach of low-temperature oxidation of metals.  相似文献   

2.
Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz. The as-obtained films were characterized by X – ray diffraction (XRD), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). XRD and TEM results showed that the layer has a chalcopyrite-type structure, predominantly oriented along (112) planes, with lattice parameters a?=?0.61?nm and c?=?1.22?nm. The optical properties in the near - infrared and visible range 600–2400?nm have been studied. The analysis of absorption coefficient yielded an energy gap value of 1.27?eV. Photoluminescence analysis of as-grown sample shows two main emission peaks located at 0.87 and 1.19?eV at 4?K.  相似文献   

3.
The total density of occupied states in the valence band of CoO and Co3O4 is determined by XPS and UPS. From variations of excitation probability of the bands, the 4 e V wide O2p band is shown to be located around 5 eV for both oxides, while structures obtained from photoionisation of the localized 3d band spread over 10 eV range below the Fermi level overlapping with O2p band. The 3d peaks located at binding energy <3 eV correspond to the calculated energy of the dn ?1 manifold final state in the octahedral and tetrahedral crystal field of CoO and Co3O4. The 3d levels at higher binding energy are shown to occur from configuration interaction in both final and initial states. These last peaks are higher in intensity for CoO relative to Co3O4. A superior limit for the width of the 3d initial band in a one electron energy diagram is given to be <3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV. This value associated to the Coulomb correlation energy measured equal to ~3 eV from shake-up and Auger energy confirms the Mott insulator nature of CoO.  相似文献   

4.
Isochromat spectra from CePd3 recorded at quantum energies of 9.7 and 72.7 eV are presented. The data obtained at 9.7 eV show three different peaks and are by and large identical to previously published data for a quantum energy of 1486 eV. Only two of those three peaks are present in the 72.7 eV spectrum. We conclude that the missing peak is bulk in origin and derives from a Ce5d-Pd4d hybridization leading to a Ce5d split off level from the filled Pd d-band.  相似文献   

5.
The structure and dynamics of the CaF2(1 1 1) surface were investigated by means of low-energy electron diffraction (LEED) and molecular dynamics (MD) simulations at 300 K. LEED beam intensities were recorded as a function of electron energy and were analyzed with the tensor LEED approach. Positions as well as mean square amplitudes of the ions in the first layers were fitted to the experimental I(E) curves. According to both LEED and MD, the CaF2(1 1 1) surface structure is similar to the bulk-terminated structure with only small relaxation of the outermost ions. Moreover, both methods show an enhancement of vibrational amplitudes in the outermost F-Ca-F triple layer.  相似文献   

6.
The (010) surface of single crystal MoO3 has been prepared and examined using LEED, XPS, UPS, and ELS. Three methods yield the stoichiometric surface: scraping in UHV and annealing, ion etching followed by reoxidation (770 K, 102 Pa O2), or oxygen treatment to remove carbon contamination. LEED shows the surface periodicity is the same as that of the bulk (010). The MoO3 valence band is 7 eV wide with density of states maxima at 1.5, 3.6, and 5.6 eV below the top of the valence band. Heating MoO3 in vacuum reduces the surface region. XPS indicates the O/Mo atomic ratio decreases to 2.85 ± 0.12 on heating to 600 K. Ar ion bombardment disorders the surface and reduces the surface O/Mo atomic ratio to 1.6. Annealing of reduced surfaces at > 770 K incompletely reoxidizes them by diffusion of oxygen from the bulk. UPS of reduced and annealed MoO3 exhibits two new emission features in the bandgap at 0.9 and 2.0 eV above the top of the valence band. These features originate from Mo derived states of a defect involving two or more Mo atoms, such as crystallographic shear planes. Because of the insulating nature of MoO3, surface charging and electron beam induced damage were substantial hindrances to electron spectroscopic examination.  相似文献   

7.
The electronic structure of Sr2CuMn2As2O2 and Sr2CuFe2As2O2 are studied by the first-principle calculations. These compounds have a body-centered-tetragonal crystal structure that consists of the CuO2 layers similar to those in the high-Tc cuprate superconductor, and intermetallic MAs (M = Mn, or Fe) layers similar to the FeAs layers in high-Tc pnictides. Such special structure makes them as interesting candidates for new type of superconductor since they have two types of superconducting layers. However, our calculations indicate that the states in the range from −2.0 eV to +2.0 eV are dominated by Mn-3d or Fe-3d states, while the states of Cu-3d are far away from the Fermi level (in the range from −3.0 eV to −1.0 eV). Such results are significantly different with the Cu-based superconductor, like La2CuO4, where the states around Fermi level are dominated by Cu-3d states. Besides, we find that the mean-field magnetic ground state is the checkerboard antiferromagnetic in Cu sublattice and the stripe antiferromagnetic in Fe (or Mn) sublattice.  相似文献   

8.
The adsorption of lead on gold at room temperature in UHV conditions has been studied by LEED and AES. We review some of the data obtained on the Au(100), (111), and (110) faces, published elsewhere, and we give some new experimental results on the stepped Au(S) [n(100) × (111)] (with n = 3, 4, 5, and 6) faces. On all these faces, as lead is deposited on the gold substrate it first forms a monolayer of lead, then a compound AuPb2. Using the LEED and Auger data we give a model of the epitaxy with a layer-by-layer growth mechanism. We propose a model which involves a transition alloy wich forms at the interface Au/AuPb2. This model is in agreement with the LEED diagrams observed before the one corresponding to bulk AuPb2. In the case of the epitaxy of lead on gold (100), we calculate the Auger peak-to-peak ] heights of the gold (72 eV) and lead (93 eV) transitions versus coverage. We obtain good agreement with the experimental data, assuming that the first and last layers of the alloy are lead monolayers and diffusion of lead in gold as well as gold in lead.  相似文献   

9.
The electronic structure of Al2O3 has been studied by electron energy loss spectroscopy (ELS), and an energy level model of both filled and empty states has been constructed from the ELS and available optical data. For the high temperature pyrolytic α-polycrystalline Al2O3 films, the transitions are assumed to originate at the two principal peaks in the valence band density of states and the O(2s) core state, and to terminate on two peaks within the conduction band density of states. We also report energy loss spectra due to excitations out of the deeper Al(2p), Al(2s), Al(1s), and O(1s) core levels. The excitations originating at the Al(2p), Al(2s), and Al(1s) core levels terminate on levels in the conduction band and on an exciton lying about 1 eV below the conduction-band edge.  相似文献   

10.
Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and photoemission yield spectroscopy (PYS) measurements have been performed on a set of ultrahigh vacuum cleaved Si(111) surfaces with different bulk dopings as a function of Ga or In coverage θ. The metal layers are obtained by evaporation on the unheated substrate and θ varies from zero to several monolayers (ML). First, the 2×1 reconstruction of the clean substrate is replaced by a 3×3 R30° structure at 13 ML, meanwhile the dangling bond peak at 0.6 eV below the valence band edge Evs is replaced by a peak at 0.1 eV for Ga or 0.3 eV for In, below Evs. At the same time, the ionization energy decreases by 0.4 eV (Ga) or 0.6 eV (In), while the Fermi level pinning position gets closer to the valence band edge by about 0.1eV. Upon increasing θ, new LEED structures develop and the electronic properties keep on changing slightly before metallic islands start to grow beyond θ ~1 ML.  相似文献   

11.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

12.
Lei Zhao 《Applied Surface Science》2008,254(15):4620-4625
Nitrogen-doped titanium dioxide (TiO2−xNx) thin films have been prepared by pulse laser deposition on quartz glass substrates by ablated titanium dioxide (rutile) target in nitrogen atmosphere. The x value (nitrogen concentration) is 0.567 as determined by X-ray photoelectron spectroscopy measurements. UV-vis spectroscopy measurements revealed two characteristic deep levels located at 1.0 and 2.5 eV below the conduction band. The 1.0 eV level is attributable to the O vacancy state and the 2.5 eV level is introduced by N doping, which contributes to narrowing the band-gap by mixing with the O2p valence band. The enhanced degradation efficiency in a broad visible-light range was observed from the degradation of methylene blue and methylene orange by the TiO2−xNx film.  相似文献   

13.
Two anolomous peaks in the ZnL3M2,3M4,5 Auger electron spectra of dried and heated samples of ZnCl2-coal mixtures have been interpreted as indication of a Zn-coal bond formation. The peaks show a decrease from the normal 9.1 eV splitting for ZnCl2 alone to 4.2 eV for ZnCl2-coal mixtures. High volatile bituminous coals show this effect to a greater extent than either higher or lower rank coals. It is surmised that the side of this bond formation could coincide with the site of catalytic activity in the catalytic hydrogenation of coal in the presence of ZnCl2.  相似文献   

14.
W Mokwa  D Kohl  G Heiland 《Surface science》1984,139(1):98-108
The UHV cleaved (110) face has been exposed to water in the range from 10 L to 2 × 104 L. The main TDS peak in H2O desorption appears at 350 K, independent of coverage. The low desorption energy of 0.7 eV (16 kcal/mol) is reasonable for oxygen atoms bound via the lone pair orbital to As as was earlier derived from UPS measurements. A broad spur between 450 and 600 K may be related to O-Ga bonds. The sticking probability shows values below 10-4; only near 4.8 × 103 L (6 × 1015 cm-2 s-1 H2O molecules for 300 s) corresponding to a coverage of about 0.4 monolayes a steep maximum appears. At about one monolayer saturation is observed. Exposures to more than 104 L of water quench the intensity of the (10) LEED spot considerably stronger than the intensity of the (11) spot. A comparison of the I(E) curves with existing model calculations suggests that the observed behaviour of the LEED spots is caused by a change in surface structure towards the unrelaxed configuration. The higher sticking coefficient observed near 0.4 monolayers may be connected with this rearrangement of surface atoms.  相似文献   

15.
汪辉  王若桢 《物理学报》1989,38(1):145-148
本文报道了用调制光谱手段对YBa2Cu3O7-δ化合物所进行的光学测量和研究。从对可见光区调制光谱结构的分析和讨论表明调制光谱可以用于研究超导体化合物的电子态结构。从而提出了又一种研究高温超导材料光学特性的新的测试手段。 关键词:  相似文献   

16.
The interaction of Cs and O2 on MoS2(0001) has been studied both in the alternate adsorption and the codeposition mode by LEED, AES, TDS and WF measurements at 170 and 300 K. Oxygen does not interact with Cs when θCs?0.04 at 300 K or θCs?0.08 at 170 K, where Cs is known to adsorb as strongly ionized, individual adatoms. The interaction at higher θCs, where Cs is known to form clusters on MoS2(0001), leads to clusters of a Cs/O complex characterized by a Cs(563 eV)/O(512 eV) Auger peak ratio of 1.1–1.3. The minimum WF is 2.1 eV at 300 and 170 K upon alternate adsorption, and 1.7 eV at both T upon codeposition. Upon heating, oxygen and Cs desorb independently, as no oxide desorption is observed. The Cs TDS spectrum is shifted to lower T in the presence of oxygen and a new desorption peak appears at ~ 880 K. The differences in the Cs/O interaction between MoS2(0001) and other semiconductors and metals are attributed to the Cs clustering and the inertness of MoS2(0001) to O2 adsorption.  相似文献   

17.
《Surface science》1996,367(2):L54-L60
Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) have been used to study the cosegregation of tungsten and nitrogen on ferritic Fe-9%W-N(100) single crystals with nitrogen contents ranging from cN = 11 to 51 wt-ppm. Cosegregation occurs at temperatures T≲600°C depending on the nitrogen content. The thickness of the cosegregated surface layer is estimated by means of Ar+ ion depth profiling as being less than two atomic layers. The LEED pattern of the tungsten and nitrogen covered Fe-9%W-51ppmN(100) substrate shows a sharp (1 × 1) structure at a low background intensity indicating epitaxial stabilization of the cosegregated tungsten nitride layer on the bcc (100) surface. The tungsten and nitrogen covered Fe-9%W-11ppmN(100) substrate exhibits a c(2 × 2) structure. On Fe-9%W-51ppmN(100) a temperature-driven phase transition between the cosegregated (1 × 1) and c(2 × 2) surface phases is observed.  相似文献   

18.
The interaction of water vapour with clean as well as with oxygen precovered Ni(110) surfaces was studied at 150 and 273 K, using UPS, ΔΦ, TDS, and ELS. The He(I) (He(II)) excited UPS indicate a molecular adsorption of H2O on Ni(110) at 150 K, showing three water-induced peaks at 6.5, 9.5 and 12.2 eV below EF (6.8, 9.4 and 12.7 eV below EF). The dramatic decrease of the Ni d-band intensity at higher exposures, as well as the course of the work function change, demonstrates the formation of H2O multilayers (ice). The observed energy shift of all water-induced UPS peaks relative to the Fermi level (ΔEmax = 1.5 eVat 200 L) with increasing coverage is related to extra-atomic relaxation effects. The activation energies of desorption were estimated as 14.9 and 17.3 kcal/mole. From the ELS measurements we conclude a great sensitivity of H2O for electron beam induced dissociation. At 273 K water adsorbs on Ni(110) only in the presence of oxygen, with two peaks at 5.7 and 9.3 eV below EF (He(II)), being interpreted as due to hydroxyl species (OH)δ? on the surface. A kinetic model for the H2O adsorption on oxygen precovered Ni(110) surfaces is proposed, and verified by a simple Monte Carlo calculation leading to the same dependence of the maximum amount of adsorbed H2O on the oxygen precoverage as revealed by work function measurements. On heating, some of the (OH)δ? recombines and desorbs as H2O at ? 320 K, leaving behind an oxygen covered Ni surface.  相似文献   

19.
The electronic structure and vibrational spectrum of the C60 film condensed on a 2H- MoS2(0001) surface have been investigated by X-ray photoelectron spectroscopy (XPS), ul-traviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES) and infrared high-resolution electron-energy-loss spectroscopy (HREELS). AES analysis showed that at low energy side of the main transition, C60 contains a total of three peaks just like that of graphite. However, the energy position of the KLL main Auger transition of C60 looks like that of diamond, indicating that the hybridization of the carbon atoms in C60 is not strictly in sp2- bonded state but that the curvature of the molecular surface introduces some sp2pz- bonded character into the molecular orbitals. XPS showed that the C 1s binding energy in C60 was 285.0eV, and its main line was very symmetric and offered no indication of more than a single carbon species. In UPS measurement the valence band spectrum of C60 within 10eV below the Fermi level (EF) shows a very distinct five-band structure that character-izes the electronic structure of the C60 molecule. HREEL results showed that the spectrum obtained from the C60 film has very rich vibrational structure. At least, four distinct main loss peaks can be identified below 200 meV. The most intense loss was recorded at 66 meV, and relatively less intense losses were recorded at 95, 164 and 197meV at a primary energy of electron beam EP = 2.0eV. The other energy-loss peaks at 46, 136, 157 and 186meV in HREEL spectrum are rather weak. These results have been compared to infrared spectrum data of the crystalline solid C60 taken from recent literatures.  相似文献   

20.
Photoemission measurements have been made at photon energies from 5–12 eV and at 21.2 eV on evaporated Sn films and the same films with varying room temperature exposure to oxygen. For hν ? 9 eV the quantum yield for Sn with exposures of as much as 4000 L oxygen (1 L = 1 Langmuir = 10?6 Torr sec) differs only slightly from the clean metal. For hν ? 9 eV no change in yield is observed with oxygen exposure. The energy distribution of photoemitted electron (EDC's) from Sn with increasing exposure to oxygen above ? 20 L are characterized by the growth of two peaks which were not present in the EDC's for the clean metal, located 2.9 ± 0.1 eV and 4.8 ± 0.1 eV below the Fermi level. We associate this structure with the presence of SnO2. No sharp resonance which could be associated with adsorbed oxygen was seen. Uniformly reduced emission from metallic Sn states and a Fermi level as sharp as for the clean metal is observed in the EDC's at all oxygen exposures. In addition, no change in work function with oxygen exposure was detected. The effects of oxygen saturate for exposures ? 4000 L. We suggest that under the conditions used in this experiment, the oxygen penetrates beneath the surface forming SnO2 and leaving metallic Sn on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号