首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》1999,251(6):394-403
The model of a combustion wave driven by local elevation of pressure in inert porous media filled with flammable gas is investigated. The combustion wave structure is studied using the Zel'dovich approach. Analytical formulae for the combustion wave speed and for values of temperature and pressure behind the flame front are derived.  相似文献   

2.
Ultra-fast magnetic resonance imaging techniques are used to image liquid distribution in two and three dimensions during air-water co-current down flow through a fixed bed of cylindrical porous pellets of length and diameter 3 mm, packed within a 43 mm internal diameter column in both the trickle- and pulsing-flow regimes. The data acquisition times used were 20 and 280 ms, giving 2-D and 3-D spatial resolutions of 1.4 mm x 2.8 mm and 3.75 mm x 3.75 mm x 1.87 mm, respectively. This work reports images of local pulsing events within the bed occurring during the trickle-to-pulse flow transition. The evolution of the local instabilities is studied as a function of increasing liquid velocity at constant gas velocity.  相似文献   

3.
4.
We investigate through numerical calculation of non-Brownian particles transported by a fluid in a porous medium, the influence of geometry and inertial effects on the capture efficiency of the solid matrix. In the case of a periodic array of cylinders and under the action of gravity, our results reveal that δSt, where δ is the particle capture efficiency, and St is the Stokes number. In the absence of gravity, we observe a typical second order transition between non-trapping and trapping of particles that can be expressed as δ ~ (St ? St c ) α , with an exponent α ≈ 0.5, where St c is the critical Stokes number. We also perform simulations for flow through a random porous structure and confirm that its capture behavior is consistent with the simple periodic model.  相似文献   

5.
Gravity driven instabilities in model porous packings of 1 mm diameter spheres are studied by comparing the broadening of the displacement front between fluids of slightly different densities in stable and unstable configurations. Water, water–glycerol and water–polymer solutions are used to vary independently viscosity and molecular diffusion and study the influence of shear-thinning properties. Both injected and displaced solutions are identical but for a different concentration of NaNO3 salt used as an ionic tracer and to introduce the density contrast. Dispersivity in stable configuration increases with polymer concentration – as already reported for double porosity packings of porous grains. Gravity-induced instabilities are shown to develop below a same threshold Péclet number Pe for water and water–glycerol solutions of different viscosities and result in considerable increases of the dispersivity. Measured threshold Pe values decrease markedly on the contrary with polymer concentration. The quantitative analysis demonstrates that the development of the instabilities is controlled by viscosity through a characteristic gravity number G (ratio between hydrostatic and viscous pressure gradients). A single threshold value of G accounts for results obtained on Newtonian and non-Newtonian solutions.  相似文献   

6.
宋骁  高兴森  刘俊明 《物理学报》2018,67(15):157512-157512
近年来,多铁异质结中电控磁性研究引起了广泛关注,已成为多铁领域的热点.现代自旋电子学器件(如磁内存)通常利用电流产生的磁场或自旋转移扭矩效应驱动磁反转来实现数据擦写,但这带来高额能耗和热量,成为亟待解决的关键难题.而利用多铁异质结实施电场驱动磁反转则有望大幅降低能耗,从而实现高速、低能耗、高稳定性新型高密度磁存储、逻辑及其他自旋电子学器件.在当前器件发展的微型化趋势下,探索可集成化的微纳尺度电场驱动磁反转方案显得越发重要.本文针对发展新型磁电器件所面临的微型化关键问题,回顾了微纳尺度电场驱动磁反转研究的新进展,主要关注小尺度多铁异质结中电控磁的新特点、新方法及相关物理机理的实验和理论成果,讨论了进入纳米尺度将面临的挑战,并对未来研究工作提出一些展望.  相似文献   

7.
This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed.  相似文献   

8.
Pulsed Gradient Spin Echo (PGSE) NMR methods may be used to measure the asymptotic dispersion coefficient as well as the velocity autocorrelation function (VACF) in porous media flow. The VACF can be measured in the frequency domain using repetitive gradient pulse trains, and in the time domain using double PGSE encoding. The one dimensional double PGSE method, and the two dimensional velocity exchange experiment (VEXSY) are briefly outlined and their application to flow in monodisperse 0.5 mm diameter beads packs described, both axial and transverse VACFs being examined. The measured correlation times are shown to agree well with calculated values. The asymptotic dispersion coefficients agree with literature values in the case of transverse flow while in axial flow it is shown that asymptotic conditions are not achieved, even for observation times longer than the correlation time for flow around a bead.  相似文献   

9.
田巨平  姚凯伦 《中国物理》2002,11(4):358-365
We have constructed a porous media model in which there are percolation clusters with varying percolation probability P and correlated site-bonds. Taking into account both the pore and the throat geometry, the viscous fingering (VF) in porous media has been investigated by using the standard over-relaxed Gauss-Seidel scheme. The simulation results show that the VF structure varies with the correlation parameter ε, the viscosity ratio M and the percolation probability P. The smaller the correlation parameter ε, the greater the deviation of the normalized size distribution of the invaded throat Ninv(r) from the truncated Rayleigh distribution. For a larger viscosity ratio M, the VF pattern looks like a diffusion-limited-aggregation structure in percolation clusters. The fractal dimension D increases with the increase of the percolation probability P and the correlation parameter ε. The velocity distribution f(α) of VF in percolation clusters is of a parabola-like curve. The tail of the distribution (large α) is longer for a larger correlation parameter ε. For a smaller ε, the distribution is very sharp. The sweep efficiency E decreases along with the decrease of the correlation parameter ε and the increase of the network size Lnz. E has a minimum as Lnz increases up to the maximum no matter what the values of P, M and ε. The E~ Lnz curve has a frozen zone and an active zone. The geometry and the topology of the porous media have strong effects on the displacement processes and the structure of VF.  相似文献   

10.
Fluid flow through three-dimensional fibrous porous media   总被引:1,自引:0,他引:1  
A system of self-consistent equations for determining the hydrodynamic resistance of dilute fibrous porous media in the case of arbitrary low Reynolds numbers and arbitrary random packing of the fibers in the media is derived on the basis of a multiple-scattering hydrodynamic theory. The equations obtained are applied to the case of isotropic packing of the fibers and to the anisotropic case when all the fibers are orthogonal to the direction of fluid flow. Equations are derived and analyzed for the velocity correlation function in a random fibrous medium. The longitudinal and transverse diffusion coefficients of a passive impurity embedded in the fluid are calculated. Zh. éksp. Teor. Fiz. 113, 2109–2128 (June 1998)  相似文献   

11.
Characterization and quantification of root water uptake processes play a key role in understanding and managing the effects of global climate change on agricultural production and ecosystem dynamics. Part of this understanding is related to the flow of water towards plant roots in soils. In this study we demonstrate for the first time, to our knowledge, that fluid flow in the voids of the pore space of a model soil system (natural sand) can be detected and mapped to an NMR image for mean flows as low as 0.06 mm/s even under the influence of internal magnetic field gradients. To accomplish this we combined multi-slice imaging with a 13-interval pulse sequence to the NMR pulse sequence 13-interval stimulated echo multi-slice imaging (13-interval STEMSI). The result is a largely reduced influence of the internal magnetic field gradients, leading to an improved signal-to-noise ratio which in turn enables one to acquire velocity maps where conventional stimulated echo methods fail.  相似文献   

12.
13.
We study numerically the behavior of two-phase flow in porous media via the parameters capillary number and viscosity ratio, under steady-state conditions and various levels of saturation. We construct a phase diagram, where the phases are defined according to whether one or both fluids move. We establish a semi-empirical theory for the location of the phase boundaries. The steady-state conditions are obtained by implementing biperiodic boundary conditions.  相似文献   

14.
员美娟  郁伯铭  郑伟  袁洁 《物理学报》2011,60(2):24703-024703
研究了非牛顿流体中的卡森流体在多孔介质中的流动特性.基于服从分形分布的弯曲毛细管束模型,运用分形几何理论推导出了该流体在多孔介质中流动的流量、流速、启动压力梯度和有效渗透率的分形解析解.模型中的每一个参数都有明确的物理意义,它将卡森流体在多孔介质中的流动特性与多孔介质的微结构参数有机联系起来.文中给出了卡森流体的流速、启动压力梯度和有效渗透率随着各影响因素的变化趋势,并进行了讨论.所得分形模型可以更深刻地理解卡森流体在多孔介质中流动的内在物理机理. 关键词: 多孔介质 卡森流体 分形  相似文献   

15.
Using a two-component composite theory, we compute the internal field gradient of a periodic porous medium induced by the magnetic susceptibility contrasts. The magnetization of such a system is computed by using the diffusion eigenstates in Fourier representation. We show that the volume averaged field gradient, when used in the formula for free diffusion, significantly overestimates the magnetization decay rate. We also establish bounds for such a periodic system within which the Gaussian approximation is valid for diffusion of spins in the pore space.  相似文献   

16.
We present a new model for fluid flow and solute transport in porous media, which employs smoothed particle hydrodynamics to solve a Langevin equation for flow and dispersion in porous media. This allows for effective separation of the advective and diffusive mixing mechanisms, which is absent in the classical dispersion theory that lumps both types of mixing into dispersion coefficient. The classical dispersion theory overestimates both mixing-induced effective reaction rates and the effective fractal dimension of the mixing fronts associated with miscible fluid Rayleigh-Taylor instabilities. We demonstrate that the stochastic (Langevin equation) model overcomes these deficiencies.  相似文献   

17.
Direct pore-level modeling of incompressible fluid flow in porous media   总被引:1,自引:0,他引:1  
We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier–Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid–solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 μm resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.  相似文献   

18.
Saturation overshoot and hysteresis for two phase flow in porous media are briefly reviewed. Old and new challenges are discussed. It is widely accepted that the traditional Richards model for twophase flow in porous media does not support non-monotone travelling wave solutions for the saturation profile. As a concequence various extensions and generalizations have been recently discussed. The review highlights different limits within the traditional theory. It emphasizes the relevance of hysteresis in the Buckley–Leverett limit with jump-type hysteresis in the relative permeabilities. Reviewing the situation it emerges that the traditional theory may have been abandoned prematurely because of its inability to predict saturation overshoot in the Richards limit.  相似文献   

19.
Quantitative flow and diffusion measurements have been made for water in model porous media, using magnetic resonance micro-imaging methods. The samples consisted of compacted glass beads of various sizes down to 1 mm diameter. Typical flow and diffusion images exhibited a spatial resolution of 117 μm × 117 μm and velocities in the range 1–2 mm/s. Comparison of volume flow rates calculated from the flow velocity maps with values measured directly yielded good agreement in all cases. There was also good agreement between the mean diffusion coefficient of water calculated from the diffusion maps and the bulk diffusion coefficient for pure water at the same temperature. In addition, the mean diffusion coefficient did not depend on the pore sizes in the bead diameter range of 1–3 mm. Our results also show that partial volume effects can be compensated by appropriate thresholding of the images prior to the final Fourier transformation in the flow-encoding dimension.  相似文献   

20.
The scope of this work is to estimate the effective mass-transfer coefficient in a two-phase system of oil and water fluid droplets, both being in a porous medium. To this end, a tracer is advected from the flowing aqueous phase to the immobile non-aqueous one. Partitioning at the fluid-fluid interface and surface diffusion are also taken into account. By using spatial/volume-averaging techniques, the appropriately simplified boundary-value problems are described and numerically solved for the flow velocity field and for the transport problem. The problem was found to be controlled by the Peclet number of the flowing phase, the dimensionless parameter Λ, containing both diffusion and partition in the two phases, as well as the geometrical properties of the porous structure. It is also verified that the usually involved unit cell-configurations underestimate the mass transport to the immobile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号