首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
The “windmill” pattern cyclic halogen polymers (XBr)3 (X = Cl, Br, I) and (BrY)n (n = 3–6, Y = Cl, Br, I) have been investigated using the density functional theory. Due to the anisotropic distribution of its electron density, the halogen atom can form halogen-bonded interactions by functioning as both electron donor sites and electron acceptor sites. For (XBr)3 (X = Cl, Br, I) trimers, the Cl···Cl interaction is the weakest, and the I···I interaction is the strongest. For (BrY)n (n = 3–6, Y = Cl, Br, I), the Br···Br halogen bonds are the strongest in (BrY)4 tetramers. We predict that the iodine-4 synthon may allow creation of a self-assembled island during crystal growth. The angle formed by the electron-depleted sigma-hole, the halogen atom and the electron-rich equatorial belt perpendicular to the bond direction, together with the halogen-bond angle, can be used to explain the geometries and strength of the halogen-bond interactions. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
A study of the halogen...halogen contacts in organic compounds using ab initio calculations and the results of previously reported crystallographic studies show that these interactions are controlled by electrostatics. These contacts can be represented by the geometric parameters of the C--X1...X2--C moieties (where theta1=C--X1...X2 and theta2=X1...X2--C; ri=X1...X2 distance). The distributions of the contacts within the sum of van der Waals radii (rvdW) versus thetai (theta1=theta2) show a maximum at theta approximately 150 degrees for X=Cl, Br, and I. This maximum is not seen in the distribution of F...F contacts. These results are in good agreement with our ab initio calculations. The theoretical results show that the position of the maximum depends on three factors: 1) The type of halogen atom, 2) the hybridization of the ipso carbon atom, and 3) the nature of the other atoms that are bonded to the ipso carbon atom apart from the halogen atom. Calculations show that the strength of these contacts decreases in the following order: I...I>Br...Br>Cl...Cl. Their relative strengths decrease as a function of the hybridization of the ipso carbon atom in the following order: sp2>sp>sp3. Attaching an electronegative atom to the carbon atom strengthens the halogen...halogen contacts. An electrostatic model is proposed based on two assumptions: 1) The presence of a positive electrostatic end cap on the halogen atom (except for fluorine) and 2) the electronic charge is anisotropically distributed around the halogen atom.  相似文献   

3.
Complexes of superalkali Li3S and XCCH (X = F, Cl, Br, and I) have been studied with theoretical calculations at the MP2/aug‐cc‐pVTZ level. Three types of structures are found: (A) the X atom combines with the S atom through a halogen bond; (B) the X atom interacts with the π electron of Li3S by a π halogen bond; (C) the H atom combines with the S atom through a hydrogen bond. For A and B, a heavier halogen atom makes the interaction stronger, while for C, the change of interaction energy is not obvious, showing a small dependence on the nature of the X atom in HCCX. A is more stable than B and their difference in stability decreases as X varies from Cl to I. For the F and Cl complexes, A is weaker than C, however, the former is stronger than the latter in the Br and I complexes. The above three types of interactions have been analyzed by means of electron localization function, electron density difference, and energy decomposition, and the results show that they have similar nature and features with conventional interactions. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The properties and applications of halogen bonds are dependent greatly on their strength. In this paper, we suggested some measures for enhancing the strength of the halogen bond relative to the hydrogen bond in the H(2)CS-HOX (X = F, Cl, and Br) system by means of quantum chemical calculations. It has been shown that with comparison to H(2)CO, the S electron donor in H(2)CS results in a smaller difference in strength for the Cl halogen bond and the corresponding hydrogen bond, and the Br halogen bond is even stronger than the hydrogen bond. The Li atom in LiHCS and methyl group in MeHCS cause an increase in the strength of halogen bonding and hydrogen bonding, but the former makes the halogen bond stronger and the latter makes the hydrogen bond stronger. In solvents, the halogen bond in the Br system is strong enough to compete with the hydrogen bond. The interaction nature and properties in these complexes have been analyzed with the natural bond orbital theory.  相似文献   

5.
Quantum chemical calculations are applied to complexes of 6-OX-fulvene (X=H, Cl, Br, I) with ZH3/H2Y (Z=N, P, As, Sb; Y=O, S, Se, Te) to study the competition between the hydrogen bond and the halogen bond. The H-bond weakens as the base atom grows in size and the associated negative electrostatic potential on the Lewis base atom diminishes. The pattern for the halogen bonds is more complicated. In most cases, the halogen bond is stronger for the heavier halogen atom, and pnicogen electron donors are more strongly bound than chalcogen. Halogen bonds to chalcogen atoms strengthen in the order O<S<Se<Te, whereas the pattern is murkier for the pnicogen donors. In terms of competition, most halogen bonds to pnicogen donors are stronger than their H-bond analogues, but there is no clear pattern with respect to chalcogen donors. O prefers a H-bond, while halogen bonds are favored by Te. For S and Se, I-bonds are strongest, followed Br, H, and Cl-bonds in that order.  相似文献   

6.
7.
The mechanism and the thermodynamics of the formation of EX2+, EX4+ and E2X5+ (E = As, P; X = Br, I) was carefully analyzed with MP2/TZVPP calculations and inclusion of entropy and solvation effects (COSMO model approximating CH2Cl2). Thus, as likely intermediates the complexes of Ag+ and one or two EX3 as well as EX3/X2 were optimized. The global minimum isomers of the Ag(EX3)2+ intermediates were found to be P-coordinated Ag(PI3)2+ and (BrPBr2)Ag(PBr3)+ but exclusively halogen coordinated Ag(X2AsX)2+ complexes. Similarly complicated is the situation for the Ag(EX3)(X2)+ intermediates: (I3E)Ag(I2)+, (BrAsBr2)Ag(Br2)+ and (Br3P)(Br-Br)Ag+ complexes were found to be the global minima. Based on all available results likely mechanisms for the formation of the known PX4+, AsBr4+, P2X5+ salts (X = Br, I) from these intermediates were proposed. An explanation for the failure to prepare an AsI4+ salt is also given.  相似文献   

8.
Lv XY  Wang MS  Yang C  Wang GE  Wang SH  Lin RG  Guo GC 《Inorganic chemistry》2012,51(7):4015-4019
Photochromism of N-methyl-4,4'-bipyridinium (MQ(+)) salts and their metal complexes has never been reported. A series of MQ(+) coordinated halozinc complexes [(MQ)ZnX(3)] (X = Cl (1), Br (2), I (3)) and [(MQ)ZnCl(1.53)I(1.47)](2)(MQ)ZnCl(1.68)I(1.32) (4), with better physicochemical stability than halide salts of the MQ(+) cation, have been found to exhibit different photochromic behaviors. Compounds 1-3 are isostructural, but only 1 and 2 show photochromism. Introduction of partial Cl atoms to nonphotochromic compound 3 yields compound 4, which also displays photochromism. The photochromic response of 1, 2, and 4 indicates the presence of their long-lived charge separation states, which originate from X → MQ(+) electron transfer according to ESR and XPS measurements. Studies on the influence of different coordinated halogen atoms demonstrate that the Cl atom may be a more suitable electron donor than Br and I atoms to design redox photochromic metal complexes.  相似文献   

9.
The competition between hydrogen‐ and halogen‐bonding interactions in complexes of 5‐halogenated 1‐methyluracil (XmU; X = F, Cl, Br, I, or At) with one or two water molecules in the binding region between C5‐X and C4?O4 is investigated with M06‐2X/6‐31+G(d). In the singly‐hydrated systems, the water molecule forms a hydrogen bond with C4?O4 for all halogens, whereas structures with a halogen bond between the water oxygen and C5‐X exist only for X = Br, I, and At. Structures with two waters forming a bridge between C4?O and C5‐X (through hydrogen‐ and halogen‐bonding interactions) exist for all halogens except F. The absence of a halogen‐bonded structure in singly‐hydrated ClmU is therefore attributed to the competing hydrogen‐bonding interaction with C4?O4. The halogen‐bond angle in the doubly‐hydrated structures (150–160°) is far from the expected linearity of halogen bonds, indicating that significantly non‐linear halogen bonds may exist in complex environments with competing interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Reactions between Zn(II) dihalides and 2-halogen-substituted pyridines 2-XPy result in a series of heteroleptic molecular complexes [(2-XPy)2ZnY2] (Y = Cl, X = Cl (1), Br (2), I (3); Y = Br, X = Cl (4), Br (5), I (6), Y = I, X = Cl (7), Br (8), and I (9)). Moreover, 1–7 are isostructural (triclinic), while 8 and 9 are monoclinic. In all cases, halogen bonding plays an important role in formation of crystal packing. Moreover, 1–9 demonstrate luminescence in asolid state; for the best emitting complexes, quantum yield (QY) exceeds 21%.  相似文献   

11.
The structures, binding energies, and electronic properties for Al7X, Al7X-, Al13X-, Al13X2-, and Al13X12- (X = F, Cl, Br) were studied at the B3LYP/6-311+G(2d,p) level. Among the systems studied, Al7 and Al13 clusters in Al7X and Al13X- reveal alkali-like and halogen-like superatom characters, respectively. Al7 can bind with one halogen atom to form a salt-like compound as Al7+delta-X-delta. Al13- can combine with one halogen atom to form a diatomic halogen anion Al13X-. However, when adding more halogens, the superatom structure would be destroyed, resulting in low-symmetry compounds with the center Al atom moving toward the cluster surface. The structures of Al13X1,2,12- (X = F, Cl, Br) are similar to those of X = I; however, their binding energies and electron structures are much different. In addition, the analyses of the calculated NBO charges show that Cl and Br have similar properties, but much different from F, when interacting with the Al clusters. The Al-Cl and Al-Br bonds have more covalent character in Al7X and Al13X2,12-, in contrast to the corresponding Al-F bond, which has prominent ionic character.  相似文献   

12.
Using density functional theory with hybrid exchange-correlation potential, we have calculated the geometrical and electronic structure, relative stability, and electron affinities of MnX(n) compounds (n = 1-6) formed by a Mn atom and halogen atoms X = F, Cl, and Br. Our objective is to examine the extent to which the Mn-X interactions are similar and to elucidate if/how the half-filled 3d-shell of a Mn atom participates in chemical bonding as the number of halogen atoms increases. While the highest oxidation number of the Mn atom in fluorides is considered to be +4, the maximum number of halogen atoms that can be chemically attached in the MnX(n)(-) anions is 6 for X = F, 5 for X = Cl, and 4 for X = Br. The MnCl(n) and MnBr(n) neutrals are superhalogens for n ≥ 3, while the superhalogen behavior of MnF(n) begins with n = 4. These results are explained to be due to the way different halogen atoms interact with the 3d electrons of Mn atom.  相似文献   

13.
Ionic and covalent derivatives of the chlorine analogue of the nonbasic, weakly coordinating triflate ion, Cl3CSO3(-) or "trichlate" ion, have been prepared and compared with the corresponding more strongly coordinated chloroacetates, Cl(x)CH(3-x)CO(2)M (x = 1-3), using 35Cl NQR (nuclear quadrupole resonance) spectroscopy. The (35)Cl NQR frequencies of all types of derivatives are sensitive to the nature of the metal ion or Lewis acid and are most sensitive in the case of monochloroacetates. In covalent (including zirconocene) derivatives, the average NQR frequencies fall as the Pauling electronegativity of M falls. The results for ionic derivatives contrast with previous results for ionic hexachlorometalates: the average (35)Cl NQR frequencies drop sharply as the ionic radius of the group 1 cation increases. Ab initio Gaussian 98 computations at the B3LYP/6-311++G(3df,3pd) level on isolated XCH2CO2M (M = Li, Na, K; X = F, Cl) molecules duplicate this trend, showing increasing polarization of the C-Cl bond and smaller electric field gradients for larger group 1 ions; the relevance of this to the solid state polymerization of chloroacetates (Herzberg, O.; Epple, M. Eur. J. Inorg. Chem. 2001, 1395-1406) is discussed. We have prepared the dihydrate and monohydrate of trichlic acid, Cl3CSO3H. Although trichlates have the highest average NQR frequencies of any of these salts, the NQR frequencies of trichlic acid dihydrate are anomalously lower than those of trichloroacetic acid, which suggests that it is a strong acid, ionized in the solid state to H5O2+ and Cl3CSO3(-) ions.  相似文献   

14.
Reactions of copper(I) halides with a series of thiosemicarbazone ligands (Htsc) in the presence of triphenylphosphine (Ph(3)P) in acetonitrile have yielded three types of complexes: (i) monomers, [CuX(eta1-S-Htsc)(Ph3P)2] [X, Htsc = I (1), Br (2), benzaldehyde thiosemicarbazone (Hbtsc); I (5), Br (6), Cl (7), pyridine-2-carbaldehyde thiosemicarbazone (Hpytsc)], (ii) halogen-bridged dimers, [Cu2(mu2-X)2(eta1-S-Htsc)2(Ph3P)2] [X, Htsc = Br (3), Hbtsc; I (8), furan-2-carbaldehyde thiosemicarbazone (Hftsc); I (11), thiophene-2-carbaldehyde thiosemicarbazone (Httsc)], and (iii) sulfur-bridged dimers, [Cu2X2(mu2-S-Htsc)2(Ph3P)2] [X, Htsc = Cl (4), Hbtsc; Br (9), Cl (10), pyrrole-2-carbaldehyde thiosemicarbazone (Hptsc); Br (12), Httsc]. All of these complexes have been characterized with the help of elemental analysis, IR, 1H, 13C, or 31P NMR spectroscopy, and X-ray crystallography (1-12). In all of the complexes, thiosemicarbazones are acting as neutral S-donor ligands in eta()S or mu2-S bonding modes. The Cu...Cu separations in the Cu(mu2-X)2Cu and Cu(mu2-S)2Cu cores lie in the ranges 2.981(1)-3.2247(6) and 2.813(1)-3.2329(8) Angstroms, respectively. The geometry around each Cu center in monomers and dimers may be treated as distorted tetrahedral. Ab initio density functional theory calculations on model monomeric and dimeric complexes of the simplest thiosemicarbazone [H2C=N-NH-C(S)-NH2, Htsc] have revealed that monomers and halogen-bridged dimers have similar stability and that sulfur-bridged dimers are stable only when halogen atoms are engaged in hydrogen bonding with the solvent of crystallization or H2O molecules.  相似文献   

15.
Density functional theory calculations were performed on halogen-bonded and hydrogen-bonded systems consisting of a halobenzene (XPh; X = F, Cl, Br, I, and At) and one or two water molecules, using the M06-2X density functional with the 6-31+G(d) (for C, H, F, Cl, and Br) and aug-cc-pVDZ-PP (for I, At) basis sets. The counterpoise procedure was performed to counteract the effect of basis set superposition error. The results show halogen bonds form in the XPh-H2O system when X > Cl. There is a trend toward stronger halogen bonding as the halogen group is descended, as assessed by interaction energy and X•••Ow internuclear separation (where Ow is the water oxygen). For all XPh-H2O systems hydrogen-bonded systems exist, containing a combination of CH•••Ow and OwHw•••X hydrogen bonds. For all systems except X = At the X•••Hw hydrogen-bonding interaction is stronger than the X•••Ow halogen bond. In the XPh-(H2O)2 system halogen bonds form only for X > Br. The two water molecules prefer to form a water dimer, either located around the C H bond (for X = Br, At, and I) or located above the benzene ring (for all halogens). Thus, even in the absence of competing strong interactions, halogen bonds may not form for the lighter halogens due to (1) competition from cooperative weak interactions such as C H•••O and OH•••X hydrogen bonds, or (2) if the formation of the halogen bond would preclude the formation of a water dimer. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
PX(4) (+)[Al(OR)(4)](-) (X=I: 1 a, X=Br: 1 b) was prepared from X(2), PX(3), and Ag[Al(OR)(4)] [R=C(CF(3))(3)] in CH(2)Cl(2) at -30 degrees C in 69-86 % yield. P(2)X(5) (+) salts were prepared from 2 PX(3) and Ag[Al(OR)(4)] in CH(2)Cl(2) at -30 degrees C yielding almost quantitatively P(2)X(5) (+)[Al(OR)(4)](-) (X=I: 3 a, X=Br: 3 b). The phosphorus-rich P(5)X(2) (+) salts arose from the reaction of cold (-78 degrees C) mixtures of PX(3), P(4), and Ag[Al(OR)(4)] giving P(5)X(2) (+)[Al(OR)(4)](-) (X=I: 4 a, X=Br: 4 b) with a C(2v)-symmetric P(5) cage. Silver salt metathesis presumably generated unstable PX(2) (+) cations from PX(3) and Ag[Al(OR)(4)] (X=Br, I) that acted as electrophilic carbene analogues and inserted into the Xbond;X (Pbond;X/Pbond;P) bond of X(2) (PX(3)/P(4)) leading to the highly electrophilic and CH(2)Cl(2)-soluble PX(4) (+) (P(2)X(5) (+)/P(5)X(2) (+)) salts. Reactions that aimed to synthesize P(2)I(3) (+) from P(2)I(4) and Ag[Al(OR)(4)] instead led to anion decomposition and the formation of P(2)I(5)(CS(2))(+)[(RO)(3)Al-F-Al(OR)(3)](-) (5). All salts were characterized by variable-temperature solution NMR studies (3 b also by (31)P MAS NMR), Raman and/or IR spectroscopy as well as X-ray crystallography (with the exception of 4 a). The thermochemical volumes of the Pbond;X cations are 121 (PBr(4) (+)), 161 (PI(4) (+)), 194 (P(2)Br(5) (+)), 271 (P(2)I(5) (+)), and 180 A(3) (P(5)Br(2) (+)). The observed reactions were fully accounted for by thermochemical calculations based on (RI-)MP2/TZVPP ab initio results and COSMO solvation enthalpy calculations (CH(2)Cl(2) solution). The enthalpies of formation of the gaseous Pbond;X cations were derived as +764 (PI(4) (+)), +617 (PBr(4) (+)), +749 (P(2)I(5) (+)), +579 (P(2)Br(5) (+)), +762 (P(5)I(2) (+)), and +705 kJ mol(-1) (P(5)Br(2) (+)). The insertion of the intermediately prepared carbene analogue PX(2) (+) cations into the respective bonds were calculated, at the (RI-)MP2/TZVPP level, to be exergonic at 298 K in CH(2)Cl(2) by Delta(r)G(CH(2)Cl(2))=-133.5 (PI(4) (+)), -183.9 (PBr(4) (+)), -106.5 (P(2)I(5) (+)), -81.5 (P(2)Br(5) (+)), -113.2 (P(5)I(2) (+)), and -114.5 kJ mol(-1) (P(5)Br(2) (+)).  相似文献   

17.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

18.
The halogen and hydrogen bonding complexes between 2,2,6,6-tetramethylpiperidine-noxyl and trihalomethanes (CHX3, X=Cl, Br, I) are simulated by computational quantum chem-istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order Cl相似文献   

19.
Experimental, analytical, and modeling techniques employed in this study elucidate interactions between adsorbate molecules and the interior surfaces of the porous host faujasite. The vibrational spectroscopies of guest and host offer opportunities to locate the guest site in the host. We present Fourier transform (FT) infrared (IR) studies of sodium-X (NaX) faujasite supercage-included tert-butyl halides, (CH(3))(3)C-X (X=Cl, Br, I) in comparison with the adsorbate molecular gas-phase and host solid-state spectra at 295 K. Four observations of guest (nu(5,) nu(6), nu(7), and {nu(3), nu(16), nu(17)}) vibrational mode changes, three of them concomitant with host mode changes, together with modeling studies, point to a particular preferred siting of the guest molecules at host hexagonal prisms (D6R). The siting involved simultaneous interactions of the host with methyl group axial protons and the halide atom. All three methyl group axial protons interact preferentially with a single D6R O1 oxygen atom via C-H...O bonding. The halide atom also interacts with a site III' Na cation. The cation, in turn, is coordinated by three O atoms (two O1 and an O4). Two of these O atoms (O1) bridge the double six-rings that form the hexagonal prism part of the NaX substructure. O4 connects the two D6R units.  相似文献   

20.
The reaction of a trinuclear rhenium sulfide cluster compound Re3S7Cl7 with dimethylphenylphosphine and CuX2 (X = Cl or Br) or CuX (X = Cl, Br, or I) formed tetranuclear cluster complexes [(Ph3P)2N][Re3(CuX)(mu3-S)4Cl6(PMe2Ph)3] (X = Cl, Br, or I). Their solutions have the characteristic intense blue color with visible spectral bands near 600 nm. Single-crystal X-ray structures show that three mu-S atoms in the intermediate trinuclear rhenium complex coordinate to a copper atom, forming elongated tetrahedral structures in which Re-Cu bonding interaction is negligible (Re-Cu distances are 3.50 to approximately 3.54 A as compared with Re-Re distances ranging from 2.69 to 2.81 A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号