首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(NPr4)2[Cu(MeCN)]2[Cu8(i-mnt)6].(MeCN)0.5.(THF)0.25 is prepared by electrocrystallization of a solution of (NPr(4))(4)[Cu(I)(8)(i-mnt)(6)]; the crystal structure consists in bidimensional layers characterised by coordination of copper atoms by the cyano groups of the iso-maleonitriledithiolate ligand of the octa-copper cluster.  相似文献   

2.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

3.
The gold(I) selenolate compound [Au(2)(SePh)(2)(mu-dppf)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) has been prepared by reaction of [Au(2)Cl(2)(mu-dppf)] with PhSeSiMe(3) in a molar ratio 1:2. This complex reacts with gold(I) or gold(III) derivatives to give polynuclear gold(I)-gold(I) or gold(I)-gold(III) complexes of the type [Au(4)(mu-SePh)(2)(PPh(3))(2)(mu-dppf)](OTf)(2), [Au(3)(C(6)F(5))(3)(mu-SePh)(2)(mu-dppf)], or [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)], with bridging selenolate ligands. The reaction of [Au(2)(SePh)(2)(mu-dppf)] with 1 equiv of AgOTf leads to the formation of the insoluble Ag(SePh) and the compound [Au(2)(mu-SePh)(mu-dppf)]OTf. The complexes [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)] and [Au(2)(mu-SePh)(mu-dppf)]OTf (two different solvates) have been characterized by X-ray diffraction studies and show the presence of weak gold(I)-gold(III) interactions in the former and intra- and intermolecular gold(I)-gold(I) inter-actions in the later.  相似文献   

4.
Reactions of two preformed trinuclear W/Cu/S clusters, [A](2)[WS(4)(CuCN)(2)] (1: A = Et(4)N; 2: A = PPh(4)), with different concentrations of acetic acid in MeCN generate two interesting 2D polymeric clusters [Et(4)N](3)[(WS(4)Cu(2))(2)(mu-CN)(3)].2MeCN (3), and [PPh(4)][WS(4)Cu(3)(mu-CN)(2)].MeCN (4), respectively. Compound 4 can also be readily obtained in a high yield from the reaction of 2 with equimolar [Cu(MeCN)(4)]PF(6) in MeCN. These compounds have been characterized by elemental analysis, IR spectra, thermal analysis, and single-crystal X-ray diffraction. An X-ray analysis reveals that compound 3 retains the WS(4)Cu(2) cluster core, which serves as a 3-connecting node to link equivalent nodes via single cyanide bridges, forming an anionic 2D (6,3) net. Compound 4 consists of a T-shaped WS(4)Cu(3) core, which also acts as a 3-connecting node, with links to 3 equivalent clusters either through single or double cyanide bridges, affording a different anionic 2D (6,3) network. The acetic acid induced aggregation of 3 and 4 from the two cluster precursors 1 and 2 suggests that this simple synthetic strategy is likely to be applicable to many related systems.  相似文献   

5.
The synthesis and characterization of a series of mononuclear d(8) complexes with at least two P-coordinated alkynylphosphine ligands and their reactivity toward cis-[Pt(C(6)F(5))(2)(THF)(2)] are reported. The cationic [Pt(C(6)F(5))(PPh(2)C triple-bond CPh)(3)](CF(3)SO(3)), 1, [M(COD)(PPh(2)C triple-bond CPh)(2)](ClO(4)) (M = Rh, 2, and Ir, 3), and neutral [Pt(o-C(6)H(4)E(2))(PPh(2)C triple-bond CPh)(2)] (E = O, 6, and S, 7) complexes have been prepared, and the crystal structures of 1, 2, and 7.CH(3)COCH(3) have been determined by X-ray crystallography. The course of the reactions of the mononuclear complexes 1-3, 6, and 7 with cis-[Pt(C(6)F(5))(2)(THF)(2)] is strongly influenced by the metal and the ligands. Thus, treatment of 1 with 1 equiv of cis-[Pt(C(6)F(5))(2)(THF)(2)] gives the double inserted cationic product [Pt(C(6)F(5))(S)mu-(C(Ph)=C(PPh(2))C(PPh(2))=C(Ph)(C(6)F(5)))Pt(C(6)F(5))(PPh(2)C triple-bond CPh)](CF(3)SO(3)) (S = THF, H(2)O), 8 (S = H(2)O, X-ray), which evolves in solution to the mononuclear complex [(C(6)F(5))(PPh(2)C triple-bond CPh)Pt(C(10)H(4)-1-C(6)F(5)-4-Ph-2,3-kappaPP'(PPh(2))(2))](CF(3) SO(3)), 9 (X-ray), containing a 1-pentafluorophenyl-2,3-bis(diphenylphosphine)-4-phenylnaphthalene ligand, formed by annulation of a phenyl group and loss of the Pt(C(6)F(5)) unit. However, analogous reactions using 2 or 3 as precursors afford mixtures of complexes, from which we have characterized by X-ray crystallography the alkynylphosphine oxide compound [(C(6)F(5))(2)Pt(mu-kappaO:eta(2)-PPh(2)(O)C triple-bond CPh)](2), 10, in the reaction with the iridium complex (3). Complexes 6 and 7, which contain additional potential bridging donor atoms (O, S), react with cis-[Pt(C(6)F(5))(2)(THF)(2)] in the appropriate molar ratio (1:1 or 1:2) to give homo- bi- or trinuclear [Pt(PPh(2)C triple-bond CPh)(mu-kappaE-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)Pt(C(6)F(5))(2)] (E = O, 11, and S, 12) and [(Pt(mu(3)-kappa(2)EE'-o-C(6)H(4)E(2))(mu-kappaP:eta(2)-PPh(2)C triple-bond CPh)(2))(Pt(C(6)F(5))(2))(2)] (E = O, 13, and S, 14) complexes. The molecular structure of 14 has been confirmed by X-ray diffraction, and the cyclic voltammetric behavior of precursor complexes 6 and 7 and polymetallic derivatives 11-14 has been examined.  相似文献   

6.
7.
The facile syntheses and the structures of five new Cu(I) alkynyl clusters, [Cu(12)(hfac)(8)(C[triple chemical bond]CnPr)(4)(thf)(6)]xTHF (1), [Cu(12)(hfac)(8)(C[triple chemical bond]CtBu)(4)] (2), [Cu(12)(hfac)(8)(C[triple chemical bond]CSiMe(3))(4)] (3), [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)]/[Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(3)(C[triple chemical bond]CnPr)(diethyl ether)] (4) and [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)] (5) are reported, in which hfacH=1,1,1,5,5,5-hexafluoropentan-2,4-dione. The first independent molecule found in the crystals of 4 (4 a) proved to be chemically identical to 5. The Cu(10) and Cu(12) cores in these clusters are based on a central "square" Cu(4)C(4) unit. Whilst the connectivities of the Cu(10) or Cu(12) units remain identical the geometries vary considerably and depend on the bulk of the alkynyl group, weak coordination of ether molecules to copper atoms in the core and CuO intramolecular contacts formed between Cu-hfac units on the periphery of the cluster. Similar intermolecular contacts and interlocking of Cu-hfac units are formed in the simple model complex [Cu(2)(hfac)(2)(HC[triple chemical bond]CtBu)] (6). When linear alkynes, C(n)H(2n+1)C[triple chemical bond]CH, are used in the synthesis and non-coordinating solvents are used in the workup, further association of the Cu(4)C(4) cores occurs and clusters with more than eighteen copper atoms are isolated.  相似文献   

8.
A novel set of stereochemically nonrigid monomeric two-coordinate copper(I) complexes, [Cu(eta(1)-H(2)CPz'(2))(2)]ClO(4) 1, [Cu(HPz')(2)]ClO(4) 2, and [Cu(HPz')(eta(1)-H(2)CPz'(2))]ClO(4) 3, where Pz' = 3,5-di-tert-butylpyrazolyl, has been synthesized and characterized by X-ray diffraction and variable-temperature (1)H NMR spectroscopy. Based on the (1)H NMR line shape analysis of complexes 1 and 2, the intramolecular fluxional process was proposed for these two-coordinate copper(I) complexes. Also, the mixed ligand complex 3 shows that these two different dynamic binding modes of the coordinated HPz' and H(2)CPz'(2) ligands can proceed simultaneously on a single copper(I) ion.  相似文献   

9.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

10.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

11.
In this contribution on fluorous biphasic catalysis (FBC), we present the synthesis and characterization of new copper complexes, and define their role, as precatalysts, in the FBC oxidation of hydrocarbons, olefins, and alcohols. Thus the previously reported, but poorly characterized, fluoroponytailed ligand, 2,2'-R(f)-bipyridine (R(f)=-(CH(2))(3)C(8)F(17)) 2, as well as the new Cu(II) fluoroponytailed carboxylate synthon complex [Cu(C(8)F(17)(CH(2))(2)CO(2))(2)] 3, will be addressed. Moreover, the reaction of previously described ligands, 1,4,7-R(f)-TACN 1, or 2,2'-R(f)-bipyridine 2 with 3 afforded new perfluoroheptane-soluble Cu(II) complexes, [Cu(C(8)F(17)(CH(2))(2)CO(2))(2)(R(f)-tacn)] 4 and [Cu(C(8)F(17)(CH(2))(2)CO(2))(2)(R(f)-bpy)] 5, respectively. The reaction of 1 with [Cu(CH(3)CN)(4)]PF(6) or [CuCl] provided new Cu(I) complexes, which could be isolated and fully characterized as [Cu(R(f)-tacn)X']X, in which X=PF(6) (6) or X'=Cl (7) (soluble in perfluoroheptane). The Cu(II) and Cu(I) complexes, 4-7, were characterized by elemental analysis, mass spectrometry, and IR, diffuse reflectance UV/Vis, and EPR spectroscopies; complex 7 was also characterized by (1)H and (19)F[(1)H] NMR spectroscopy. Complexes 4 and 5, as well as 6 and 7 generated in situ, were evaluated as precatalysts for hydrocarbon and olefin functionalization. The oxidation reactions of these substrates in the presence of the necessary oxidants, tert-butyl hydroperoxide (TBHP) and oxygen gas, proceeded under FBC conditions for 5, 7, and Cu(I) salts with 2. However, the complexes with ligand 2 could not be recycled, owing to significant ligand dissociation. The Cu(II) complex 4, with the ligand 1, provide the oxidation of 4-nitrobenzyl alcohol to 4-nitrobenzaldehyde under single-phase FBC conditions at 90 degrees C with TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy) and O(2); the precatalyst 4, can be utilized for an additional four catalytic cycles without loss of activity. Plausible mechanisms concerning these FBC oxidation reactions will be discussed.  相似文献   

12.
Self-assembly of four bis(pyridyl) ligands with longer flexible spacer: 1,4-bis(3-pyridylaminomethyl)benzene (L1), 1,4-bis(2-pyridylaminomethyl)benzene (L2), 1,3-bis(3-pyridylaminomethyl)benzene (L3) and 1,3-bis(2-pyridylaminomethyl)benzene (L4), and CuX (X = Br and I) leads to the formation of eight [Cu(n)X(n)]-based (X = Br and I; n = 1, 2, and 4) complexes, [Cu(2)I(2)L1(PPh(3))(4)] (1), [Cu(4)Cl(2)Br(2)(L4)(2)(PPh(3))(6)]·(CH(3)CN)(2) (2), [Cu(2)I(2)(L3)(2)] (3), {[Cu(2)Br(2)L2(PPh(3))(2)]·(CH(2)Cl(2))(2)}(n) (4), [CuIL1](n)·nCH(2)Cl(2) (5), [CuIL1](n) (6), [CuIL4](n) (7) and [Cu(2)I(2)L4](n) (8), which have been synthesized and characterized by elemental analysis, IR, TG, powder and single-crystal X-ray diffraction. Structural analyses show that the eight complexes possess an increasing dimensionality from 0D (1-3) to 1D (4) to 2D (5-8), in which 1 and 2 contain a CuX unit, 2-7 contain a Cu(2)X(2) unit and 8 contains a Cu(4)X(4) unit. Such evolvement indicates that the conformation of flexible bis(pyridyl) ligands and the participation of triphenylphosphine (PPh(3)) as a second ligand take an essential role in the framework formation of the Cu(i) complexes. Moreover, a pair of symmetry-related L3 ligands in complex 3 coordinate to the rhomboid Cu(2)I(2) dimer to form "handcuff-shaped" dinuclear structures, which are further joined together through intermolecular N-HI hydrogen bonds to furnish a 2D (4,4) layer. Although complexes 5 and 6 exhibit a similar 2D (4,4) layer constructed from L1 ligand bridging [Cu(2)I(2)](n) units, the different packing fashion of the layers leads to the formation of 3D porous frameworks of 5 and dense 3D frameworks of 6. The "twisted-boat" conformation of the Cu(4)I(4) tetramer unit in complex 8 has not been reported so far.  相似文献   

13.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

14.
Four Cu(I) complexes were synthesized with a family of pyridylmethylamide ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me(3); 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph(3))]. Complexes 1-3 were synthesized from the respective ligand and [Cu(CH(3)CN)(4)]PF(6) in a 2 : 1 molar ratio: [Cu(HL)(2)]PF(6) (1), [Cu(2)(HL(Me3))(4)](PF(6))(2) (2), [Cu(HL(Ph3))(2)]PF(6) (3). Complex 4, [Cu(HL)(CH(3)CN)(PPh(3))]PF(6), was synthesized from the reaction of HL with [Cu(CH(3)CN)(4)]PF(6) and PPh(3) in a 1 : 1 : 1 molar ratio. X-Ray crystal structures reveal that complexes 1, 3 and 4 are mononuclear Cu(I) species, while complex 2 is a Cu(I) dimer. The copper ions are four-coordinate with geometries ranging from distorted tetrahedral to seesaw in 1, 2, and 4. Complexes 1 and 2 are very air sensitive and they display similar electrochemical properties. The coordination geometry of complex 3 is nearly linear, two-coordinate. Complex 3 is exceptionally stable with respect to oxidation in the air, and its cyclic voltammetry shows no oxidation wave in the range of 0-1.5 V. The unusual inertness of complex 3 towards oxidation is attributed to the protection from bulky triphenyl substituent of the HL(Ph3) ligand. A new geometric parameter for four-coordinate compounds, tau(4), is proposed as an improved, simple metric for quantitatively evaluating the geometry of four-coordinate complexes and compounds.  相似文献   

15.
The complex [Re[kappa(3)-H(mu-H)B(tim(Me))(2)](CO)(3)] (2a) (tim(Me) = 2-mercapto-1-methylimidazolyl) reacts with a variety of neutral substrates to afford new complexes featuring the dihydrobis(2-mercapto-1-methylimidazolyl)borate coordinated in a bidentate or unidentate fashion. By treating 2a with unidentate ligands, the mononuclear complexes [Re[kappa(2)-H(2)B(tim(Me))(2)](CO)(3)(L)] (L = imidazole (5), 4-(dimethylamino)pyridine (6), tert-butylisonitrile (7), triphenylphosphine (8)) were formed, upon replacement of the agostic B-H...Re bond by the correspondent unidentate ligand. With potentially bidentate substrates, 2a is transformed into mononuclear or dinuclear complexes, depending on the atom donor set of the reacting substrates. Reaction of compound 2a with ethylenediamine (en) gave the complex [Re[kappa(1)-H(2)B(tim(Me))(2)](CO)(3)(en)] (9), because of cleavage of the agostic interaction, dechelation of one mercaptoimidazolyl ring, and bidentate coordination of the amine. By contrast, 1,2-bis(diphenyl)phosphinoethane (dppe) is not able to replace the mercaptoimidazolyl ring, and the dimer [Re[kappa(2)-H(2)B(tim(Me))(2)](CO)(3)](2)(mu-dppe) (10) was formed. The novel Re(I) tricarbonyl complexes (5-10) have been fully characterized, including by X-ray diffraction analysis in the case of 6, 8, 9, and 10. The X-ray diffraction study confirmed the unprecedented unidentate coordination mode of the dihydrobis(2-mercapto-1-methylimidazolyl)borate in complex 9.  相似文献   

16.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

17.
Deprotonation of the N-thiophosphorylated thioureas RC(S)NHP(S)(OiPr)(2) (R = Me(2)N, HL(I); iPrNH, HL(II); 2,6-Me(2)C(6)H(3)NH, HL(III), 2,4,6-Me(3)C(6)H(2)NH, HL(IV), aza-15-crown-5, HL(V)) and reaction with CuI or Cu(NO(3))(2) in aqueous EtOH leads to the polynuclear complexes [Cu(4)(L(I)-S,S')(4)], [Cu(8)(L(II)-S,S')(8)], and [Cu(3)(L(III-V)-S,S')(3)]. The structures of these compounds were investigated by IR, (1)H, (31)P{(1)H} NMR, UV-vis spectroscopy and elemental analyses. The crystal structures of [Cu(4)L(I)(4)], [Cu(8)L(II)(8)], [Cu(3)L(III,IV)(3)] were determined by single-crystal X-ray diffraction. Reaction of the deprotonated ligands (L(I-V))(-) with a mixture of CuI and 1,10-phenanthroline (phen) or PPh(3) leads to the mixed-ligand mononuclear complexes [Cu(phen)L(I-V)], [Cu(PPh(3))L(I-V)] or [Cu(PPh(3))(2)L(I-V)]. The same mixed-ligand complexes were obtained from the reaction of [Cu(4)L(I)(4)], [Cu(8)L(II)(8)], [Cu(3)L(III-V)(3)] with phen or PPh(3).  相似文献   

18.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

19.
The new boron dihalides of the type [HC(CMe)(2)(NC(6)F(5))(2)]BX(2) (X = Cl, Br, I) have been prepared and characterized by single-crystal X-ray diffraction. Of the various synthetic approaches explored, the best method in terms of yield and product purity involves the silylhalide elimination reaction of the silylated iminoamine [HC(CMe)(2)(NC(6)F(5))(N{SiMe(3)}C(6)F(5))] with BX(3). Chloroborenium salt [HC(CMe)(2)(NC(6)F(5))(2)BCl][AlCl(4)] was prepared by treatment of [HC(CMe)(2)(NC(6)F(5))(2)]BCl(2) with AlCl(3) in CH(2)Cl(2) solution. This salt was also structurally authenticated and represents the first such data for a beta-diketiminate-supported haloborenium cation.  相似文献   

20.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号