首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptive frame methods for elliptic operator equations   总被引:2,自引:0,他引:2  
This paper is concerned with the development of adaptive numerical methods for elliptic operator equations. We are especially interested in discretization schemes based on frames. The central objective is to derive an adaptive frame algorithm which is guaranteed to converge for a wide range of cases. As a core ingredient we use the concept of Gelfand frames which induces equivalences between smoothness norms and weighted sequence norms of frame coefficients. It turns out that this Gelfand characteristic of frames is closely related to their localization properties. We also give constructive examples of Gelfand wavelet frames on bounded domains. Finally, an application to the efficient adaptive computation of canonical dual frames is presented.  相似文献   

2.
Adaptive wavelet methods for elliptic operator equations: Convergence rates   总被引:9,自引:0,他引:9  

This paper is concerned with the construction and analysis of wavelet-based adaptive algorithms for the numerical solution of elliptic equations. These algorithms approximate the solution of the equation by a linear combination of wavelets. Therefore, a benchmark for their performance is provided by the rate of best approximation to by an arbitrary linear combination of wavelets (so called -term approximation), which would be obtained by keeping the largest wavelet coefficients of the real solution (which of course is unknown). The main result of the paper is the construction of an adaptive scheme which produces an approximation to with error in the energy norm, whenever such a rate is possible by -term approximation. The range of 0$"> for which this holds is only limited by the approximation properties of the wavelets together with their ability to compress the elliptic operator. Moreover, it is shown that the number of arithmetic operations needed to compute the approximate solution stays proportional to . The adaptive algorithm applies to a wide class of elliptic problems and wavelet bases. The analysis in this paper puts forward new techniques for treating elliptic problems as well as the linear systems of equations that arise from the wavelet discretization.

  相似文献   


3.
This paper is concerned with the construction of biorthogonal wavelet bases defined on a union of parametric images of the unit -cube. These bases are to satisfy certain requirements imposed by applications to a class of operator equations acting on such domains. This covers also elliptic boundary value problems, although this study is primarily motivated by our previous analysis of wavelet methods for pseudo-differential equations with special emphasis on boundary integral equations. In this case it is natural to model the boundary surface as a union of parametric images of the unit cube. It will be shown how to construct wavelet bases on the surface which are composed of wavelet bases defined on each surface patch. Here the relevant properties are the validity of norm equivalences in certain ranges of Sobolev scales, as well as appropriate moment conditions.

  相似文献   


4.
In this article, we are concerned with the numerical treatment of nonlinear elliptic boundary value problems. Our method of choice is a domain decomposition strategy. Partially following the lines from (Cohen, Dahmen and deVore, SIAM J Numer Anal 41 (2003), 1785–1823; Kappei, Appl Anal J Sci 90 (2011), 1323–1353; Lui, SIAM J Sci Comput 21 (2000), 1506–1523; Stevenson and Werner, Math Comp 78 (2009), 619–644), we develop an adaptive additive Schwarz method using wavelet frames. We show that the method converges with an asymptotically optimal rate and support our theoretical results with numerical tests in one and two space dimensions. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

5.
This article is concerned with adaptive numerical frame methods for elliptic operator equations. We show how specific noncanonical frame expansions on domains can be constructed. Moreover, we study the approximation order of best n‐term frame approximation, which serves as the benchmark for the performance of adaptive schemes. We also discuss numerical experiments for second order elliptic boundary value problems in polygonal domains where the discretization is based on recent constructions of boundary adapted wavelet bases on the interval. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

6.
This paper is concerned with developing numerical techniques for the adaptive application of global operators of potential type in wavelet coordinates. This is a core ingredient for a new type of adaptive solvers that has so far been explored primarily for PDEs. We shall show how to realize asymptotically optimal complexity in the present context of global operators. ``Asymptotically optimal' means here that any target accuracy can be achieved at a computational expense that stays proportional to the number of degrees of freedom (within the setting determined by an underlying wavelet basis) that would ideally be necessary for realizing that target accuracy if full knowledge about the unknown solution were given. The theoretical findings are supported and quantified by the first numerical experiments.

  相似文献   


7.
8.
Sufficient conditions are found for the asymptotic optimality of projection methods as applied to linear operator equations in Hilbert spaces. The conditions are applicable to a wide class of equations when asymptotically optimal projection methods are sought for their solution. Applications illustrating the result are presented.  相似文献   

9.
We develop multilevel augmentation methods for solving differential equations. We first establish a theoretical framework for convergence analysis of the boundary value problems of differential equations, and then construct multiscale orthonormal bases in H0m(0,1) spaces. Finally, the multilevel augmentation methods in conjunction with the multiscale orthonormal bases are applied to two-point boundary value problems of both second-order and fourth-order differential equations. Theoretical analysis and numerical tests show that these methods are computationally stable, efficient and accurate. Dedicated to Professor Charles A. Micchelli on the occasion of his 60th birthday with friendship and esteem. Mathematics subject classifications (2000) 65J15, 65R20. Zhongying Chen: Supported in part by the Natural Science Foundation of China under grants 10371137 and 10201034, the Foundation of Doctoral Program of National Higher Education of China under grant 20030558008, Guangdong Provincial Natural Science Foundation of China under grant 1011170 and the Foundation of Zhongshan University Advanced Research Center. Yuesheng Xu: Corresponding author. Supported in part by the US National Science Foundation under grants 9973427 and 0312113, by NASA under grant NCC5-399, by the Natural Science Foundation of China under grant 10371122 and by the Chinese Academy of Sciences under the program of “One Hundred Distinguished Young Scientists”.  相似文献   

10.
In this paper, we describe tensor methods for large systems of nonlinear equations based on Krylov subspace techniques for approximately solving the linear systems that are required in each tensor iteration. We refer to a method in this class as a tensor-Krylov algorithm. We describe comparative testing for a tensor-Krylov implementation versus an analogous implementation based on a Newton-Krylov method. The test results show that tensor-Krylov methods are much more efficient and robust than Newton-Krylov methods on hard nonlinear equations problems.Part of this work was performed while the author was research associate at CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique).Research supported in part by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

11.
An a posteriori error analysis for Boussinesq equations is derived in this article. Then we compare this new estimate with a previous one developed for a regularized version of Boussinesq equations in a previous work. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 214–236, 2000  相似文献   

12.
The recently proposed simulation framework of interface relaxation for developing multi-domain multi-physics simulation engines is considered. An experimental study of the behavior of two representative interface relaxation methods is presented. Three linear and one non-linear elliptic two-dimensional PDE problems are considered and they are coupled with both cartesian and general decompositions. The characteristics and the effectiveness of the proposed collaborative PDE solving framework in general, and of the two interface relaxation methods in particular are shown.  相似文献   

13.
Tensor methods for large sparse systems of nonlinear equations   总被引:1,自引:0,他引:1  
This paper introduces tensor methods for solving large sparse systems of nonlinear equations. Tensor methods for nonlinear equations were developed in the context of solving small to medium-sized dense problems. They base each iteration on a quadratic model of the nonlinear equations, where the second-order term is selected so that the model requires no more derivative or function information per iteration than standard linear model-based methods, and hardly more storage or arithmetic operations per iteration. Computational experiments on small to medium-sized problems have shown tensor methods to be considerably more efficient than standard Newton-based methods, with a particularly large advantage on singular problems. This paper considers the extension of this approach to solve large sparse problems. The key issue considered is how to make efficient use of sparsity in forming and solving the tensor model problem at each iteration. Accomplishing this turns out to require an entirely new way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor method for solving large sparse systems of nonlinear equations. Test results indicate that this tensor method is significantly more efficient and robust than an efficient sparse Newton-based method, in terms of iterations, function evaluations, and execution time. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Work supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Computational and Technology Research, US Department of Energy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order L25935D, and by the National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative Agreement No. CCR-9120008.Research supported by AFOSR Grants No. AFOSR-90-0109 and F49620-94-1-0101, ARO Grants No. DAAL03-91-G-0151 and DAAH04-94-G-0228, and NSF Grant No. CCR-9101795.  相似文献   

14.
The aim of this paper is to display numerical results that show the interest of some multilevel methods for problems of parabolic type. These schemes are based on multilevel spatial splittings and the use of different time steps for the various spatial components. The spatial discretization we investigate is of spectral Fourier type, so the approximate solution naturally splits into the sum of a low frequency component and a high frequency one. The time discretization is of implicit/explicit Euler type for each spatial component. Based on a posteriori estimates, we introduce adaptive one-level and multilevel algorithms. Two problems are considered: the heat equation and a nonlinear problem. Numerical experiments are conducted for both problems using the one-level and the multilevel algorithms. The multilevel method is up to 70% faster than the one-level method.

  相似文献   


15.
Various adaptive methods for the solution of ordinary differential boundary value problems using piecewise polynomial collocation are considered. Five different criteria are compared using both interval subdivision and mesh redistribution. The methods are all based on choosing sub-intervals so that the criterion values have (approximately) equal values in each sub-interval. In addition to the main comparison it is shown by example that at least when accuracy is low then equidistribution may not give a unique solution. The main results that using interval size times maximum residual as criterion gives very much better results than using maximum residual itself. It is also shown that a criterion based on a global error estimate while giving very good results in some cases, is unsatisfactory in other cases. The other criteria considered are that given by De Boor and the last Chebyshev series coefficient. AMS subject classification (2000)  65L10, 65L50, 65L60  相似文献   

16.
In this paper, someQ-order convergence theorems are given for the problem of solving nonlinear systems of equations when using very general finitely terminating methods for the solution of the associated linear systems. The theorems differ from those of Dembo, Eisenstat, and Steihaug in the different stopping condition and in their applicability to the nonlinear ABS algorithm.Lecture presented at the University of Bergamo, Bergamo, Italy, October 1989.  相似文献   

17.
Second degree normalized implicit conjugate gradient methods for the numerical solution of self-adjoint elliptic partial differential equations are developed. A proposal for the selection of certain values of the iteration parameters ?i, γi involved in solving two and three-dimensional elliptic boundary-value problems leading to substantial savings in computational work is presented. Experimental results for model problems are given.  相似文献   

18.
In this article, we investigate the application of pseudo‐transient‐continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, use the PTC‐methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction‐type PTC‐method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC ‐Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2005–2022, 2017  相似文献   

19.
A jumping problem for a class of singular semilinear elliptic equations is considered. Minimax methods in the framework of nonsmooth critical point theory are applied.  相似文献   

20.
In many investigations in mechanics, we must solve the equation detB()=0, where the elements of the matrixB are general functions of . A method of solution is proposed, and results of numerical experiments are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号