首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
左维  徐忠锋 《物理学报》2007,56(1):129-136
在同位旋相关的Brueckner理论框架内, 研究了三体核力重排贡献对同位旋对称势及其动量相关性和密度依赖性的影响,特别是研究了三体核力重排效应对于非对称核物质中质子和中子有效质量同位旋劈裂的影响. 结果表明: 三体核力重排效应对质子和中子单核子势均具有排斥性,而且其贡献随动量和密度增加而迅速增大. 在低密度区域,三体核力重排贡献对同位旋对称势的影响相当小,然而随着密度的升高,三体核力重排效应的贡献显著增强. 在高密度区域,三体核力重排效应使得同位旋对称势明显增大,而且当密度足够高时,三体核力重排贡献甚至导致对称势的动量相关性质发生改变. 三体核力的重排效应对核子有效质量同位旋依赖性的影响是使高密度丰中子核物质中质子-中子有效质量同位旋劈裂的幅度显著减小.  相似文献   

2.
在微观多体Brueckner-Hartree-Fock理论框架内, 实现了三体核力对核物质中单核子势的重排贡献的计算, 研究了三体核力重排贡献对单核子平均势场的动量相关性和密度依赖性的影响. 另外, 还计算了核物质中核子的有效质量并着重讨论了三体核力重排效应的影响. 结果表明: 三体核力对单核子势的重排贡献具有排斥性, 而且三体核力的重排效应随动量和密度的增加而迅速增强; 在高密度和高动量区域这一排斥贡献具有很强的动量相关性并起到了减弱单核子势吸引性和增强单核子势动量相关性的重要作用, 有助于澄清非相对论性BHF平均势场在高密度和高动量区域吸引性过强和动量相关性过弱的问题.  相似文献   

3.
We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner-Hartree-Fock approach extended to include a microscopic three-body force (TBF). It is shown that the potential energy per nucleon in the isospin-singlet T=0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities, the TBF effect on the lsospin-triplet T=1 channel contribution turns out to be much larger than that on the T=0 channel contribution. At low densities around and below the normal nuclear matter density, the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T=1 component is almost independent of isospin asymmetry. As the density increases, the T=1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T=0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.  相似文献   

4.
We present an upgraded review of our microscopic investigation on the single-particle properties and the EOS of isospin asymmetric nuclear matter within the framework of the Brueckner theory extended to include a microscopic three-body force. We pay special attention to the discussion of the three-body force effect and the comparison of our results with the predictions by other ab initio approaches. Three-body force is shown to be necessary for reproducing the empirical saturation properties of symmetric nuclear matter within nonrelativistic microscopic frameworks, and also for extending the hole-line expansion to a wide density range. The three-body force effect on nuclear symmetry energy is repulsive, and it leads to a significant stiffening of the density dependence of symmetry energy at supra-saturation densities. Within the Brueckner approach, the three-body force affects the nucleon s.p. potentials primarily via its rearrangement contribution which is strongly repulsive and momentum-dependent at high densities and high momenta. Both the rearrangement contribution induced by the three-body force and the effect of ground-state correlations are crucial for predicting reliably the single-particle properties within the Brueckner framework.  相似文献   

5.
We investigate the equation of state of asymmetric nuclear matter and its isospin dependence in various spin-isospin ST channels within the framework of the Brueckner-Hartree-Fock approach extended to include a microscopic three-body force(TBF) . It is shown that the potential energy per nucleon in the isospinsinglet T = 0 channel is mainly determined by the contribution from the tensor SD coupled channel. At high densities,the TBF effect on the isospin-triplet T = 1 channel contribution turns out to be much larger than that on the T =0 channel contribution. At low densities around and below the normal nuclear matter density,the isospin dependence is found to come essentially from the isospin-singlet SD channel and the isospin-triplet T = 1 component is almost independent of isospin asymmetry. As the density increases,the T = 1 channel contribution becomes sensitive to the isospin asymmetry and at high enough densities its isospin dependence may even become more pronounced than that of the T = 0 contribution. The present results may provide some microscopic constraints for improving effective nucleon-nucleon interactions in a nuclear medium and for constructing new functionals of effective nucleon-nucleon interaction based on microscopic many-body theories.  相似文献   

6.
以有限温度Brueckner-Hartree-Fock(BHF)方法为基础,利用质量算子的空穴线展开,计算了不同温度和密度下的核物质中单核子势和核子有效质量,特别是研究和讨论了基态关联效应和三体核力贡献对热核物质中单核子势的影响. 研究表明,基态关联和三体核力对单核子势的密度和温度依赖性均有重要影响. 基态关联导致的重排修正具有排斥性,大大减弱了低动量区域单核子势的吸引性,而且基态关联效应对单核子势的贡献随密度增大而增强,随温度升高而减弱. 三体核力对基态关联的影响是导致单核子势中重排项贡献减小. 在高密 关键词: 有限温度BHF方法 质量算子空穴线展开 重排修正 单核子势 有效质量  相似文献   

7.
在扩展的Brueckner-Hartree-Fock (BHF)理论框架下, 采用Argonne V14 两体相互作用势研究了对称核物质中核子-核子散射的总截面和微分截面, 分别讨论了三体核力(TBF)重排效应和基态关联效应对全同和非全同核子散射截面的影响。 计算表明: 低动量区域的基态关联效应会导致介质中核子-核子散射截面的增大; 而随着密度的增加,TBF重排效应的逐渐加强会减小介质中的核子-核子散射截面。 The nucleon nucleon cross sections in symmetric nuclear matter were investigated in the framework of the extended Brueckner-Hartree-Fock(BHF) approach with Argonne V14 two body interaction. The influences of the ground state correlation and the rearrangement contribution of the three body force (TBF) on the cross section have been obtained and discussed separately for identical and non identical nucleon collisions. It is shown that the magnitudes of the cross section are increased by the effects of the ground state correlation in low momentum transfers,and are suppressed in medium with increasing density when the rearrangement contribution of the TBF force is considered.  相似文献   

8.
By using our recently developed semiclassical model for the imaginary part of the optical potential, we calculate here the polarization and correlation contributions to the real part via the dispersion relation. As underlying nonlocal mean-field potential, the semiclassical Hartree-Fock potential evaluated with the Gogny D1 effective interaction or the Perey-Buck potential is employed. With this full self-energy or second-order mass operator we calculate consistently depths, radial dependence and volume integrals of the single-particle potential, rearrangement energies and effective masses, the momentum distribution, mean free paths of a nucleon in a nucleus, and single-particle level densities. We obtain depths which are in excellent agreement with experiment including the Fermi anomaly: the effective mass exhibits a strong bump at the Fermi and the nuclear surface and the single-particle level density at the Fermi energy is enhanced by 65% yielding almost the correct average experimental value.  相似文献   

9.
We have calculated and compared the three-body force effects on the properties of nuclear matter under the gap and continuous choices for the self-consistent auxiliary potential within the Brueckner-Hartree-Fock approach by adopting the Argonne V18 and the Bonn B two-body potentials plus a microscopic three-body force (TBF). The TBF provides a strong repulsive effect on the equation of state of nuclear matter at high densities for both the gap and continuous choices. The saturation point turns out to be much closer to the empirical value when the continuous choice is adopted. In addition, the dependence of the calculated symmetry energy upon the choice of the self-consistent auxiliary potential is discussed.  相似文献   

10.
ANG Pei  ZUO Wei 《中国物理C(英文版)》2014,38(8):084102-084102
We have calculated and compared the three-body force effects on the properties of nuclear matter under the gap and continuous choices for the self-consistent auxiliary potential within the Brueckner-Hartree-Fock approach by adopting the Argonne V18 and the Bonn B two-body potentials plus a microscopic three-body force (TBF). The TBF provides a strong repulsive effect on the equation of state of nuclear matter at high densities for both the gap and continuous choices. The saturation point turns out to be much closer to the empirical value when the continuous choice is adopted. In addition, the dependence of the calculated symmetry energy upon the choice of the self-consistent auxiliary potential is discussed.  相似文献   

11.
We introduce the concept of a spintronic effective mass for spin-polarized carriers in semiconductor structures, which arises from the strong spin-polarization dependence of the renormalized effective mass in an interacting spin-polarized electron system. The majority-spin many-body effective mass renormalization differs by more than a factor of 2 at r(s) = 5 between the unpolarized and the fully polarized two-dimensional system, whereas the polarization dependence (approximately 15%) is more modest in three dimensions around metallic densities (r(s) approximately 5). The spin-polarization dependence of the carrier effective mass is of significance in various spintronic applications.  相似文献   

12.
We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Argonne V14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.  相似文献   

13.
《Nuclear Physics A》1986,451(1):160-170
The effect of vacuum polarization on the ground-state mass systematics of nuclei is considered. Its contribution to the ground-state energy of heavy nuclei is found to be a few MeV and can be simulated by using an effective nuclear radius in the Coulomb energy term of the mass formula. Its effect on the fission barriers seems to be small. The sub-barrier heavy-ion fusion cross section is found to be reduced at most by an order of magnitude with the inclusion of vacuum polarization in the interaction potential.  相似文献   

14.
In this work we study the effect of the symmetry energy on several properties of neutron stars. First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core transition. We show that whereas the first two quantities present a clear correlation with the slope parameter L of the symmetry energy, no satisfactory correlation is seen between the transition pressure and L . However, a linear combination of the slope and curvature parameters at ρ = 0.1 fm?3 is well correlated with the transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase. It is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend on the density dependence of the symmetry energy: a small L gives rise to larger clusters. The influence of the equation of state at subsaturation densities on the extension of the inner crust of the neutron star is also discussed. Finally, the effect of the density dependence of the symmetry energy on the strangeness content of neutron stars is studied in the last part of the work. It is found that charged (neutral) hyperons appear at smaller (larger) densities for smaller values of the slope parameter L. A linear correlation between the radius and the strangeness content of a star with a fixed mass is also found.  相似文献   

15.
BCS-BEC crossover in 2D Fermi gases with Rashba spin-orbit coupling   总被引:1,自引:0,他引:1  
We present a systematic theoretical study of the BCS-BEC crossover in two-dimensional Fermi gases with Rashba spin-orbit coupling (SOC). By solving the exact two-body problem in the presence of an attractive short-range interaction we show that the SOC enhances the formation of the bound state: the binding energy E(B) and effective mass m(B) of the bound state grows along with the increase of the SOC. For the many-body problem, even at weak attraction, a dilute Fermi gas can evolve from a BCS superfluid state to a Bose condensation of molecules when the SOC becomes comparable to the Fermi momentum. The ground-state properties and the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature are studied, and analytical results are obtained in various limits. For large SOC, the BKT transition temperature recovers that for a Bose gas with an effective mass m(B). We find that the condensate and superfluid densities have distinct behaviors in the presence of SOC: the condensate density is generally enhanced by the SOC due to the increase of the molecule binding; the superfluid density is suppressed because of the nontrivial molecule effective mass m(B).  相似文献   

16.
核物质中K介子有效质量与非线性效应   总被引:2,自引:0,他引:2  
分析了核物质标量密度和矢量密度对K介子有效质量的影响.使用非线性σ-ω-ρ模型和相对论平均场理论,给出了核物质标量密度和矢量密度的近似关系曲线,并与线性σ-ω模型的情况进行了比较.利用这一关系,改进了K介子有效质量和核物质密度之间存在的依赖关系,比较不同模型对K介子有效质量的影响.同时也计算了纯中子物质中K介子在不同模型下的有效质量曲线,并与在对称核物质中的情况进行了比较.We investigate the effect of the nuclear vector density ρ_B and the scalar density ρ_S on in-medium kaon and antikaon effective masses. Based on nonlinear σ-ω-ρ model in the relativistic mean-field approximation, we obtained the relation between the two nuclear densities both σ-ω model and σ-ω-ρ model. By (using) the relation, we improve the dependence of in-medium kaon and antikaon effective masses. We also studied the differences of kaon and antikaon effective mass abtained by...  相似文献   

17.
An approach based on the local energy density functional method for describing the ground-state properties of superfluid nuclei is presented. A generalized variational principle is formulated which corresponds, in the weak pairing approximation, to a full treatment of the Hartree-Fock-Bogoliubov problem with an effective contact pairing interaction. The Gor’kov equations for generalized Green’s functions are treated exactly in the coordinate-space representation. The method is used to calculate the differential observables including odd-even mass differences and odd-even effects in charge radii which turn out to be very sensitive to the density dependence of the effective pairing force. A better knowledge of this density dependence allows one to make predictions for the pairing gap at the Fermi surface as a function of nuclear matter density. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 260–265 (25 August 1998)  相似文献   

18.
《Physics letters. A》1999,256(4):257-265
We propose a velocity-dependent δ-function potential model for a one-dimensional fermion system, under which the two-particle interchange operators in the Bethe hypothesis satisfy the Yang–Baxter equation. This model, proportional to the product of the momenta of two interacting particles, is not translation invariant. It is found that the ground-state particle distribution densities become negative in the low momentum region. To resolve the controversy, we apply an overall momentum shift to the system, and obtain reasonable solutions. The dependence of the ground-state distributions on the momentum shift is discussed.  相似文献   

19.
The Hartree-Fock ground-state densities of neutral atoms can be utilized to approximate the electrostatic potential due to the electronic charge cloud at the nucleus. The correction due to electronic correlation is shown to involve the derivative of the correlation energy with respect to atomic number at constant number of electrons. Two theoretical expressions lead to quite similar partitioning of this derivative into the sum of two parts. Finally empirical estimates of the derivative are obtained and the small correction to the Hartree-Fock electrostatic potential at the nucleus is thereby found.  相似文献   

20.
Density-based perturbation theory within the Hohenberg-Kohn (HK) formalism of density functional theory (DFT), developed recently by us, is employed to calculate hyperpolarizabilities of helium-like ions from their ground-state densities obtained from their respective Hylleraas wavefunctions. The only approximation made is that of the local density (LDA) for exchange and correlation. Use of densities — instead of wavefunctions — in density-based perturbation theory together with simple approximate energy functionals makes our calculations much simpler than those based on wavefunctions. They lead, however, to accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号