首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着新能源如电动汽车、储能电站的蓬勃发展,人们对下一代高性能锂离子电池的能量密度、功率密度和循环寿命提出了更高的要求. 而富锂锰基正极材料xLi2MnO3·(1-x)LiMO2(0 < x < 1,M = Mn、Co、Ni…)具有可逆比容量高(240 ~ 280 mAh·g-1,2.0 ~ 4.8 V)、电化学性能较佳、成本较低等优点,已吸引了研究者的关注,有望成为下一代锂离子电池用正极材料. 本实验室采用固相法和溶胶-凝胶法制备不同的富锂锰基正极材料,其中,溶胶-凝胶法制得的Li[Li0.2Mn0.54Ni0.13Co0.13]O2电极首周期放电比容量277.3 mAh·g-1,50周期循环后容量272.8 mAh·g-1,容量保持率98.4%. 本文重点结合本实验室的研究工作,对新型富锂锰基正极材料xLi2MnO3·(1-x)LiMO2的结构、合成、电化学性能改性和充放电机理等进行总结与评述.  相似文献   

2.
The solid state formation of lithium manganese oxides has been studied from the thermal decomposition of mixtures Li2CO3–Mn3O4 with XLi (lithium cationic fraction)=0.33 (LiMn2O4), 0.50 (LiMnO2) and 0.66 (Li2MnO3). The analysis of the reactivity has been performed mainly by thermoanalytical (TG/DSC) and diffractometric (XRPD) techniques either on physical mixtures and on mixtures subjected to mechanical activation by high energy milling. At XLi=0.33, the cubic lithium manganese spinel oxide (LiMn2O4) forms in air. TG measurements showed that the reaction starts at a considerably lower temperature in the activated mixture. By variable temperature X-ray diffraction it has been assessed that, upon mechanical activation, LiMn2O4 forms directly and its formation is completed within 700 °C whereas, starting from a physical mixture, the formation goes through Mn2O3 and is complete only at 800 °C. At T>820 °C LiMn2O4 reversibly decomposes to LiMnO2 and Mn3O4 with an enthalpy of 30.05 kJ mol−1 of LiMn2O4. At XLi=0.50, by annealing under nitrogen flow for 6 h at 650 °C the activated mixture, the orthorhombic LiMnO2 is formed. Such a formation goes through a mixture of LiMnO2 and LiMn2O4. The enthalpy of LiMnO2 solid state formation from the activated mixture has been determined to be 57.4 kJ mol−1 of LiMnO2. At XLi=0.66 in air the mechanical activation considerably lowers the temperature within the monoclinic phase Li2MnO3 forms. Besides the reaction enthalpy could be determined as 40.13 kJ mol−1 of Li2MnO3. The reaction, when performed under nitrogen flow, goes through the formation of LiMnO2. Such a first stage of the reaction is affected by the temperature of reaction rather than by mechanical activation. The activation greatly enhances the second stage of the reaction leading from LiMnO2 to Li2MnO3.  相似文献   

3.
掺稀土的LiM0.02Mn1.98O4锂离子电池正极材料   总被引:11,自引:0,他引:11  
自1991年Ohzuku[1] 、 Tarascon[2]等成功地将LiMn2O4用于锂离子电池正极以来, 人们对尖晶石LiMn2O4的电化学性质进行了广泛的研究[3]. 尖晶石LiMn2O4的一个缺点是充放电过程中, 特别在较高温度(如50 ℃)下, 其容量下降明显. Zhou等[4]详细研究了该过程, 发现造成容量下降的主要原因是充电状况下正极LiMn2O4的溶解, 由于Jahn-Taller效应生成不稳定的两相结构以及电解液的分解等. 为了提高LiMn2O4的充放电循环稳定性, 人们除了优化合成条件和溶液组分外, 主要采用添加少量掺杂元素(M), 部分替代LiMn2O4中的Mn, 制得LiMxMn2-xO4, 以抑制溶解和Jahn-Taller效应引起的结构变化.  相似文献   

4.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

5.
A series of LiMn2O4/LiFePO4 blend cathodes was prepared by hand milling and ball milling in order to compensate the disadvantage of spinel LiMn2O4 and olivine LiFePO4. The morphologies of the blends were studied by scanning electron microscopy, and their electrochemical properties were studied by charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. It is easy to obtain uniform LiMn2O4/LiFePO4 blends by the hand milling technique, while significant particle agglomeration is caused by the ball milling technique. When the LiMn2O4:LiFePO4 mass ratio is 1:1, the nano-sized LiFePO4 powders not only uniformly cover the micron-sized LiMn2O4 particles but also effectively fill in the cavities of the LiMn2O4 space. Such morphology offers a good electrical contact and a high tap density, which leads to a high discharge capacity and good cycle stability.  相似文献   

6.
Na_(0.44)MnO_2具有特殊的三维隧道结构和良好的化学稳定性,是一种理想的钠离子电池正极材料。本文研究了Na_(0.44)MnO_2正极材料的高温电化学性能,采用液相法对Na_(0.44)MnO_2正极材料进行Al_2O_3包覆改性,并通过电化学、形貌分析、结构分析、化学成分表征等方法研究Al_2O_3包覆的改性机制。结果表明:Al_2O_3包覆层有效地隔离了Na_(0.44)MnO_2与电解液的直接接触,缓解了高温下锰的溶解,从而维持了稳定的电极/溶液界面结构。Na_(0.44)MnO_2@Al_2O_3在55°C下的电化学性能相比未包覆Na_(0.44)MnO_2有显著提升:循环100次后容量保持率达79.2%,远高于未包覆的66.5%;在10C (1C=120 mAh·g~(-1))的大电流密度下放电比容量达到63.6 mAh·g~(-1),而未包覆的仅有12.3 mAh·g~(-1)。  相似文献   

7.
Li2MnO3正极材料具有较高的理论容量(459 mAh·g -1),不仅安全无毒还能够大大降低电池的制造成本,从而受到越来越多的关注. 然而,较低的首圈库仑效率和较差的循环性能妨碍了其在锂电池中的实际应用. 在此,作者研究了MgF2涂层对Li2MnO3正极材料的电化学性能. 结果表明,MgF2涂层诱导部分层状Li2MnO3向尖晶石相转化,从而降低了首圈不可逆容量,提高库仑效率. 重量比为0.5%、1.0%和2.0%的MgF2涂层电极的初始库仑效率分别为70.1%、77.5%和84.9%,而原始电极仅为57.7%. 充放电曲线表明,1.0wt.%MgF2涂层改性的Li2MnO3具有最高的充放电容量和最佳的循环稳定性. 40个循环后1.0wt.%MgF2涂层样品的容量保持率为81%,远高于原始样品的容量保持率(53.6%). 电化学阻抗谱结果表明MgF2涂层减少了不利成分的快速沉积,并改善了电极的循环稳定性.  相似文献   

8.
本文合成了掺铝富锂材料Li1.2Mn0.543Co0.078Ni0.155Al0.030O2,并使用扫描电镜(SEM)、粉末X射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)和拉曼散射光谱(Raman)等观察表征富锂和掺铝富锂材料. 结果表明,共沉淀法合成掺铝富锂材料,具有R-3m空间群结构,Al元素进入晶格,未单独成相. 电化学性能和非现场XRD测试结果表明,4%(by mole)掺铝富锂电极100周期循环容量保持率83.7%,Al元素掺杂有利于容量的释放,增强了电极富锂材料的结构稳定性,提高了循环性能.  相似文献   

9.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2014,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料Li Mn1.9Mg0.05Ti0.05O4.采用热重分析(TGA),X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的Li Mn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 m Ah·g-1,循环50次后放电比容量仍为118.5m Ah·g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 m Ah·g-1,容量保持率达到91.9%,远远高于未掺杂的Li Mn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂Li Mn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.  相似文献   

10.
本文通过乙酸锂与二氧化钛反应,采用一步高温固相法在不同反应温度(750 °C/800 °C/850 °C)和反应气氛(氮气/空气)下合成Li4Ti5O12材料. 通过热重分析、X射线衍射、扫描电子显微镜、循环伏安曲线和充放电曲线分析了Li4Ti5O12的晶体结构,观察其微观形貌,并测试其电化学性能. 结果表明,800 °C氮气烧结得到的Li4Ti5O12(L-800N)材料粒径较小,该材料在1.0C倍率下的首周期放电比容量达到170.7 mAh·g-1,100周期循环后的容量保持率高达94.6%,即使是10C高倍率其首周期放电容量依然有143.0 mAh·g-1,表现出了良好的倍率和循环寿命性能.  相似文献   

11.
采用固相反应法制备了具有尖晶石结构的LiMn_2O_4/TiO_2系列催化剂,探讨了TiO_2、Li/TiO_2、Mn/TiO_2、LiMn_2O_4及LiMn_2O_4/TiO_2等不同组成催化剂的甲烷氧化偶联反应性能,采用XRD、XPS、CO_2-TPD和H_2-TPR等表征方法对该系列催化剂进行了分析。结果表明,具有尖晶石结构的LiMn_2O_4化合物具有较高的甲烷氧化偶联催化活性,在775℃、0.1MPa、7200mL/(h·g),CH_4∶O_2(体积比)为2.5的条件下,甲烷转化率可达25.8%,C2选择性可达43.2%。TiO_2的存在不仅进一步提高了甲烷转化率和C2选择性,还有效抑制了甲烷完全氧化形成CO_2的过程。负载8%LiMn_2O_4的LiMn_2O_4/TiO_2催化剂性能达到最优,此时甲烷转化率达到31.6%,C2选择性为52.4%,CO_2选择性降低到26.3%。考察了不同焙烧温度对催化剂活性的影响,850℃为LiMn_2O_4/TiO_2催化剂的最佳焙烧温度。  相似文献   

12.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

13.
张洁  王久林  杨军 《电化学》2013,19(3):215-224
富锂材料xLi2MnO3·(1-x)LiMO2(0-1)和低廉的价格已引起人们的广泛兴趣. 但其首次充放电循环的较大不可逆容量损失、较差的倍率性能和循环过程的材料相变等关键问题制约了其发展. 富锂材料结构解析和充放电机理探索一直是研究的热点. 目前,富锂材料是否为固溶体仍有争论,首次充电4.5 V平台的氧流失机理已得到确认. 为了提高富锂材料的电化学性能,可从体相掺杂、表面包覆和结构形貌控制等方面对材料进行改性,其电化学性能有显著提升. 本文综述了富锂材料最新研究进展,归纳了相关制备方法,重点介绍了富锂材料的结构特点、锂嵌脱机理和改性方法,并展望了今后的研究方向.  相似文献   

14.
In order to utilize the brine resources in China, the solid-liquid equilibria in quaternary system Li+, K+//SO42-, B4O72--H2O at 288 K was studied by the isothermal solution equilibrium method. Solubilities and densities of solutions were determined experimentally. According to the experimental data, the equilibrium phase diagrams, density-composition diagram and corresponding water content diagram of the quaternary system were plotted. Double salt KLiSO4 was found in the reciprocal quaternary system Li+, K+//SO42-, B4O72--H2O at 288 K. The quaternary system has three invariant points, seven univariant curves and five fields of crystallization. The five crystallization regions correspond to Li2B4O7·3H2O, Li2SO4·H2O, K2B4O7·4H2O, K2SO4 and KLiSO4, respectively. The crystallization field of salt Li2B4O7·3H2O is the largest, whereas that of Li2SO4·H2O is the smallest. The experimental results show that Li2SO4·H2O has a strong salting-out effect on other salts.  相似文献   

15.
通过溶胶-凝胶和高温固相掺杂反应可控合成了形貌均匀、结晶性好的尖晶石型LiMn1.9Al0.1O3.95F0.05正极材料,探究了Al部分取代Mn、F部分取代O后对结构的影响,测试并比较了电极材料的倍率性能和循环充放电性能. 结果表明,尖晶石型LiMn1.9Al0.1O3.95F0.05和LiMn2O4有同样的晶型,但电极较传统的LiMn2O4电极倍率稳定性有显著提高. 在连续混合(如0.1C、0.5C和1C)充放电150次后,LiMn1.9Al0.1O3.95F0.05电极的容量仍能保持90%以上.  相似文献   

16.
万露  付争兵 《应用化学》2018,35(1):116-122
以钛酸正四丁酯为钛源、甲酸锂为锂源、柠檬酸为碳源、脲作为氮源,采用溶胶-凝胶法制备出了氮修饰碳包覆钛酸锂(Li4Ti5O12/NC)的复合电极材料。 借助X射线衍射仪(XRD)、X射线光电子能谱分析仪(XPS)、傅里叶变换红外光谱仪(FTIR)、热重分析仪(TGA)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对Li4Ti5O12/NC的晶体结构、组成和形貌进行了表征分析,结果表明,所得产物是由尖晶石结构Li4Ti5O12外围包覆NC组成。 恒电流充放电实验结果显示,碳氮包覆量为9.48% 的Li4Ti5O12/NC材料在1C下首次放电比容量为212.9 mA·h/g,充放电循环100周后仍能保持160.1 mA·h/g的较高比容量。 碳氮包覆不会改变材料的晶型,但能有效抑制复合材料粒径增大,同时增加复合材料锂脱嵌活性位点,提高其比容量和导电性。  相似文献   

17.
Li0.33MnO2 cathode material was synthesized by solid state reaction. The material showed a small coherent domain size about 10 nm determined by X-ray diffraction and transmission electron microscopy. The electrochemical properties of the material were studied in different potential windows of 3.5―2.0 V and 4.3―2.0 V. An irreversible transformation to spinel phase was observed in the initial several cycles, which was more prominent on cycling at 4.3―2.0 V. Electrochemical impedance spectroscopy showed that the Li+ diffusion coefficient of the material was about 2×10–9 cm2/s. Li0.33MnO2 showed a reversible discharge capacity of 140 and 200 mA·h/g in the potential windows of 3.5―2.0 V and 4.3―2.0 V, respectively. But the capacity retention at 4.3―2.0 V was poor due to the thicker spinel layer formed on the material surface.  相似文献   

18.
郑杰允  汪锐  李泓 《物理化学学报》2014,30(10):1855-1860
采用固相烧结法制备了纯相Li2MnO3正极材料及靶材,采用脉冲激光沉积(PLD)法在氧气气氛、不同温度下沉积了Li2MnO3薄膜.通过X射线衍射(XRD)和拉曼(Raman)光谱表征了薄膜的晶体结构,采用扫描电镜(SEM)观察薄膜形貌及厚度,利用电化学手段测试了Li2MnO3薄膜作为锂离子电池正极材料性能.结果表明,PLD方法制备的纯相Li2MnO3薄膜随着沉积温度升高薄膜结晶性变好.25℃沉积的薄膜难以可逆充放电,400℃沉积的薄膜具有较高的电化学活性和循环稳定性.相对于粉末材料,400与600℃制备的Li2MnO3薄膜电极平均放电电位随着循环次数的衰减速率明显低于相应的粉体材料.  相似文献   

19.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

20.
报道了对苯二甲酸镁作为钠离子电池负极材料的研究.以对苯二甲酸和氢氧化镁为原料,采用酸碱中和反应制备了含结晶水的对苯二甲酸镁(MgC8H4O4·2H2O),该材料对钠离子电池表现出了较好的电化学活性、优异的倍率性能以及良好的循环稳定性.在0.5C(1C=300 mA·g-1)倍率下循环50周以后,可逆容量由114mAh·g-1降至95 mAh·g-1,容量保持率高达83%;在2C的倍率下有高达90 mAh·g-1的可逆比容量.另外,在氮气气氛中,400℃进行后续热处理得到了不含结晶水的对苯二甲酸镁(MgC8H4O4),探讨了结晶水对其电化学性能的影响.结果表明,MgC8H4O4·2H2O的比容量、倍率性能以及循环稳定性都明显优于不含结晶水的对苯二甲酸镁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号