首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of the energy localization in f(R)theories of gravity has attracted much interest in recent years.In this paper,the vacuum solutions of the modified field equations for a power model of plane symmetric metric are studied in metric f(R)gravity with the assumption of constant Ricci scalar.Next,we determine the energy-momentum complexes in f(R)theories of gravity for this spacetime for some important models.We also show that these models satisfy the stability and constant curvature conditions.  相似文献   

2.
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.  相似文献   

3.
We show that the metric in f(R) theories of gravity in Palatini formalism can be solved as the product of a rank-two tensor times a scalar function which is very sensitive to the local energy-momentum densities. This local dependence of the metric generates new gravitationally-induced microscopic interactions, which eventually would lead to self-accelerated test body trajectories. These facts make very unlikely the viability of Palatini f(R) models designed to change the late-time cosmic evolution.  相似文献   

4.
This paper is devoted to investigate non-vacuum solutions of cylindrically symmetric spacetime in the context of metric f(R) gravity. We take dust matter to find energy density of the universe. In particular, we find two exact solutions, which correspond to two f(R) models in each case. The first solution provides constant curvature while the second solution corresponds to non-constant curvature. The functions of the Ricci scalar and energy densities are evaluated in each case.  相似文献   

5.
This paper is devoted to investigate non-vacuum solutions of cylindrically symmetric spacetime in the context of metric f(R) gravity. We take dust matter to find energy density of the universe. In particular, we find two exact solutions, which correspond to two f(R) models in each case. The first solution provides constant curvature while the second solution corresponds to non-constant curvature. The functions of the Ricci scalar and energy densities are evaluated in each case.  相似文献   

6.
We study the effect of the non-minimal coupling between matter and geometry on the gravitational constant in the context of f(R) theories of gravity on cosmic scales. For a class of f(R) models,the result shows that the value of the gravitational constant not only changes over time but also has the dampened oscillation behavior.Compared with the result of the standard ACDM model, the consequence suggests that the coupling between matter and geometry should be weak.  相似文献   

7.
The main purpose of this paper is to investigate the exact solutions of plane symmetric spacetime in the context of f(R,T)gravity[Phys.Rev.D 84(2011)024020],where f(R,T)is an arbitrary function of Ricci scalar R and trace of the energy momentum tensor T.We explore the exact solutions for two different classes of f(R,T)models.The first class f(R,T)=R+2f(T)yields a solution which corresponds to Taub's metric while the second class f(R,T)=f_1(R)+f_2(T)provides two additional solutions which include the well known anti-deSitter spacetime.The energy densities and corresponding functions for f(R,T)models are evaluated in each case.  相似文献   

8.
The standard cosmology is based on general relativity (GR) and includes dark matter and dark energy and predicts a fixed relationship between the gravitational potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of gravity often make different predictions. We propose a set of measurements which can test this relationship, thereby distinguishing between dark energy or matter models and models in which gravity differs from GR. Planned surveys will be able to measure E(G), an observational quantity whose expectation value is equal to the ratio of the Laplacian of the Newtonian potentials to the peculiar velocity divergence, to percent accuracy. This will easily separate alternatives such as the cold dark matter model with a cosmological constant, Dvali-Gabadadze-Porrati, TeVeS, and f(R) gravity.  相似文献   

9.
Conformal transformation as a mathematical tool has been used in many areas of gravitational physics. In this paper, we consider gravity’s rainbow, in which the metric can be treated as a conformal rescaling of the original metric. By using the conformal transformation technique, we get a specific form of a modified Newton’s constant and cosmological constant in gravity’s rainbow, which implies that the total vacuum energy is dependent on probe energy. Moreover, the result shows that Einstein gravity’s rainbow can be described by energy-dependent \(f(E,\tilde{R})\) gravity. At last, we study the f(R) gravity, when gravity’s rainbow is considered, which can also be described as energy-dependent \(\tilde{f}(E,\tilde{R})\) gravity.  相似文献   

10.
Recently, corrections to the standard Einstein-Hilbert action were proposed to explain the current cosmic acceleration in stead of introducing dark energy. In the Palatini formulation of those modified gravity models, there is an important observation due to Arkani-Hamed: matter loops will give rise to a correction to the modified gravity action proportional to the Ricci scalar of the metric. In the presence of such a term, we show that the current forms of modified gravity models in Palatini formulation, specifically, the 1/R gravity and ln R gravity, will have phantoms. Then we study the possible instabilities due to the presence of phantom fields. We show that the strong instability in the metric formulation of 1/R gravity indicated by Dolgov and Kawasaki will not appear and the decay timescales for the phantom fields may be long enough for the theories to make sense as effective field theory . On the other hand, if we change the sign of the modification terms to eliminate the phantoms, some other inconsistencies will arise for the various versions of the modified gravity models. Finally, we comment on the universal property of the Palatini formulation of the matter loops corrected modified gravity models and its implications.  相似文献   

11.
All f(R) modified gravity theories are conformally identical to models of quintessence in which matter is coupled to dark energy with a strong coupling. This coupling induces a cosmological evolution radically different from standard cosmology. We find that, in all f(R) theories where a power of R is dominant at large or small R (which include most of those proposed so far in the literature), the scale factor during the matter phase grows as t(1/2) instead of the standard law t(2/3). This behavior is grossly inconsistent with cosmological observations (e.g., Wilkinson Microwave Anisotropy Probe), thereby ruling out these models even if they pass the supernovae test and can escape the local gravity constraints.  相似文献   

12.
In this work we show that the gravity Lagrangian at relatively low curvatures in both metric and Palatini formalisms is a bounded function that can only depart from the linearity within the limits defined by well-known functions. We obtain those functions by analyzing a set of inequalities that any theory must satisfy in order to be compatible with laboratory and solar system observational constraints. This result implies that the recently suggested f(R)gravity theories with nonlinear terms that dominate at low curvatures are incompatible with observations and, therefore, cannot represent a valid mechanism to justify the cosmic speedup.  相似文献   

13.
We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation on manifolds enabled with nonholonomic distributions is considered. We prove that, for certain types of nonholonomic constraints, there are modelled effective Lagrangians which do not develop instabilities. It is also elaborated a linearization formalism for anholonomic noncommutative gravity theories models and analyzed the stability of stationary ellipsoidal solutions defining some nonholonomic and/or nonsymmetric deformations of the Schwarzschild metric. We show how to construct nonholonomic distributions which remove instabilities in nonsymmetric gravity theories. It is concluded that instabilities do not consist a general feature of theories of gravity with nonsymmetric metrics but a particular property of some models and/or unconstrained solutions.  相似文献   

14.
The first order formalism is applied to study the field equations of a general Lagrangian density for gravity of the form . These field equations correspond to theories which are a subclass of conformally metric theories in which the derivative of the metric is proportional to the metric by a Weyl vector field. The resulting geometrical structure is unique, except whenf(R)=aR 2, in the sense that the Weyl field is identifiable in terms of the trace of the energy-momentum tensor and its derivatives. In the casef(R)=aR 2 the metric is only defined up to a conformai factor. We discuss the matter conservation equations which are implied by the invariance of the theories under diffeomorphisms. We apply the results to the case of dust and obtain that in general the dust particles will not follow geodesic Unes. We consider the linearized field equations and apply them to obtain the weak field slow motion limit. It is found that the gravitational potential acquires a new term which depends linearly on the mass density. The importance of these new equations is briefly discussed.  相似文献   

15.
The main purpose of this paper is to investigate energy bounds in the context of f(R,G) gravity. To meet this aim, we choose static spherically symmetric spacetime in f(R,G) gravity to develop the field equations. We select three different models of f(R,G) gravity, which are thoroughly discussed in the literature. Firstly, the inequalities are formulated using energy bounds and then viability of the considered models are checked respectively. Graphical analysis show that specific f(R,G) gravity models are satisfied under suitable values of model parameters. It is shown that in a certain case energy bounds are satisfied expect SEC, which supports the late time acceleration expansion of unverse.  相似文献   

16.
The main purpose of this paper is to investigate energy bounds in the context of f(R, G) gravity. To meet this aim, we choose static spherically symmetric spacetime in f(R, G) gravity to develop the field equations. We select three different models of f(R, G) gravity, which are thoroughly discussed in the literature. Firstly, the inequalities are formulated using energy bounds and then viability of the considered models are checked respectively. Graphical analysis show that specific f(R, G) gravity models are satisfied under suitable values of model parameters. It is shown that in a certain case energy bounds are satisfied expect SEC, which supports the late time acceleration expansion of unverse.  相似文献   

17.
General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor theories with preferred direction established at every point of spacetime by a fixed-norm vector field. The dynamical vector field defined in this way is referred to as the "aether". In this paper, we put forward the idea of a null aether field and introduce, for the first time, the Null Aether Theory(NAT) — a vector-tensor theory. We first study the Newtonian limit of this theory and then construct exact spherically symmetric black hole solutions in the theory in four dimensions, which contain Vaidya-type non-static solutions and static Schwarzschild-(A)dS type solutions, Reissner-Nordstr?m-(A)dS type solutions and solutions of conformal gravity as special cases. Afterwards, we study the cosmological solutions in NAT:We find some exact solutions with perfect fluid distribution for spatially flat FLRW metric and null aether propagating along the x direction. We observe that there are solutions in which the universe has big-bang singularity and null field diminishes asymptotically. We also study exact gravitational wave solutions — AdS-plane waves and pp-waves — in this theory in any dimension D ≥ 3. Assuming the Kerr-Schild-Kundt class of metrics for such solutions, we show that the full field equations of the theory are reduced to two, in general coupled, differential equations when the background metric assumes the maximally symmetric form. The main conclusion of these computations is that the spin-0 aether field acquires a "mass" determined by the cosmological constant of the background spacetime and the Lagrange multiplier given in the theory.  相似文献   

18.
A general nonperturvative loop quantization procedure for metric modified gravity is reviewed. As an example, this procedure is applied to scalar-tensor theories of gravity. The quantum kinematical framework of these theories is rigorously constructed. Both the Hamiltonian and master constraint operators are well defined and proposed to represent quantum dynamics of scalar-tensor theories. As an application to models, we set up the basic structure of loop quantum Brans-Dicke cosmology. The effective dynamical equations of loop quantum Brans-Dicke cosmology are also obtained, which lay a foundation for the phenomenological investigation to possible quantum gravity effects in cosmology.  相似文献   

19.
The status of experimental tests of general relativity to the end of 1983 is reviewed. The experimental support for the Einstein equivalence principle is summarized. If this principle is valid, gravitation must be described by a curved space-time, “metric” theory of gravity. General properties of metric theories are described and the parametrized post-Newtonian (PPN) formalism for treating the weak-field, slow-motion limit of such theories is set up. A zoo of selected metric theories of gravity is presented. Experimental tests of metric theories are then described, including the “classical” tests, tests of the strong equivalence principle, and others. The possibility of using gravitational-wave observations to test metric theories is discussed. A review is presented of the binary pulsar, in which the first evidence for gravitational radiation has been found. Finally cosmological tests of alternative theories are briefly described.  相似文献   

20.
In a paper[Gen. Relativ. Gravit. 48 (2016) 57] Chakrabarti and Banerjee investigated perfect fluid collapse in f(R) gravity model and claimed that such a collapse is possible. In this paper we show that without the assumption of dark energy it is not possible that perfect fluid spherical gravitational collapse will occur. We have solved the field equations by assuming linear equation of state (p=ωμ) in metric f(R) gravity with ω=-1. It is shown that Chakrabarti and Banerjee reached to false conclusion as they derived wrong field equations. We have also discussed formation of apparent horizon and singularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号