首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of an external sinusoidal force in protein folding kinetics. The externally applied force field acts on the each amino acid residues of polypeptide chains. Our simulation results show that mean protein folding time first increases with driving frequency and then decreases passing through a maximum. With further increase of the driving frequency the mean folding time starts increasing as the noise-induced hoping event (from the denatured state to the native state) begins to experience many oscillations over the mean barrier crossing time period. Thus unlike one-dimensional barrier crossing problems, the external oscillating force field induces both stabilization or destabilization of the denatured state of a protein. We have also studied the parametric dependence of the folding dynamics on temperature, viscosity, non-Markovian character of bath in presence of the external field.  相似文献   

2.
We study crystallization of paramagnetic beads in a magnetic field gradient generated by one-dimensional nanomagnets. The pressure in such a system depends on both the magnetic forces and the hydrodynamic flow, and we estimate the flow threshold for disassembling the crystal near the magnetic potential barrier. A number of different defects have been observed which fluctuate in shape or propagate along the crystal, and it is found that the defect density increases away from the nanomagnet. We also study the melting of the crystal/fluid system after removal of the nanomagnet and demonstrate that the bond-oriental order parameter decreases with time. The nanomagnet can be moved in a controlled manner by a weak external magnetic field, and at sufficiently large driving velocities we observe self-healing crack formation characterized by a roughening of the lattice as well as gap formation. Finally, when confined between two oscillating nanomagnets, the colloidal crystal is shown to break up and form dipolar chains above a certain oscillation frequency.  相似文献   

3.
We explore the pattern of time evolution of different observables in a harmonically confined single carrier 2-D quantum dot when an external time-varying electric field is switched on. A static transverse magnetic field is also present. For given strengths of the confining field, cyclotron frequency, intensity and oscillation frequency of the external field, and pulse shape parameters, the system reveals a long time dynamics that leads to a kind of localization in the unperturbed state space. The presence of cubic anharmonicity in the confining field brings in new features in the dynamics. Frequency dependent linear and non-linear response properties of the dot are analyzed.  相似文献   

4.
Mass transfer from an oscillating microsphere   总被引:1,自引:0,他引:1  
The enhancement of mass transfer from single oscillating aerocolloidal droplets having initial diameters approximately 40 microm has been measured using electrodynamic levitation to trap and oscillate a droplet evaporating in nitrogen gas. The frequency and amplitude of the oscillation were controlled by means of ac and dc fields applied to the ring electrodes of the electrodynamic balance (EDB). Elastic light scattering was used to size the droplet. It is shown that the mass transfer process for a colloidal or aerocolloidal particle oscillating in the Stokes flow regime is governed by a Peclet number for oscillation and a dimensionless oscillation parameter that represents the ratio of the diffusion time scale to the oscillation time scale. Evaporation rates are reported for stably oscillating droplets that are as much as five times the rate for evaporation in a stagnant gas. The enhancement is substantially larger than that predicted by quasi-steady-flow mass transfer.  相似文献   

5.
An explicit electron dynamics approach has been used to calculate the nonlinear optical properties of C60 and its radical anion. An external perturbation, in the form of an oscillating electric field, induces the time-evolution of the molecular wavefunction. The time-averaged instantaneous dipole moment of the systems gives the molecular response to perturbations of varying field intensities and frequency of oscillation. The polarizabilities and the second-order hyperpolarizabilties have been calculated and are in good qualitative agreement with experimentally available data. In line with previous theoretical and experimental studies, the nonlinear effect is enhanced for the radical species. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

6.
We found a novel oscillating phenomenon associated with surface wetting during the vacuum deposition of an organic semiconductor (rubrene) on a liquid film (bis(2-ethylhexyl)sebacate, B2EHS). In-situ observations by an optical microscope revealed that the oscillation was associated with the growth of the rubrene crystals. The oscillation frequency was proportional to the evaporation rate of rubrene. On the basis of the contact angle measurements, it was concluded that the oscillation is probably due to the change in the contact angle of the liquid caused by the formation of ultrathin rubrene films on the liquid surface.  相似文献   

7.
Abstract— The effect of an alternating current (AC) magnetic field (MF) on radical behavior is identical to that exerted by a direct current (DC) field of the same instantaneous strength provided that the frequency is low enough in comparison with radical pair dynamics. This criterion is easily met by environmental fields. In general, combined AC/DC fields will lead to increased radical concentrations and oscillating free radical concentrations. Interestingly, the frequency of oscillation for radical concentration seldom follows exactly the pattern of the external AC component of the MF. Even the simple case of an AC-only field at 60 Hz can lead to oscillations in radical concentrations at 120 Hz. The concentration time dependence patterns can be even more complex when the singlet and triplet levels of the radical pair are not degenerate. Further, the effects can change dramatically depending upon the absolute and relative values of the AC and DC components, thus providing a possible explanation for MF windows for certain effects reported experimentally. Effects on the average radical concentration are probably relevant only for fields higher than about 0.1 gauss. Oscillating radical concentrations may influence signal transduction processes or other cellular mechanisms; at the present time there is not enough knowledge available to establish a reasonable threshold for these types of effects. This contribution aims at providing a solid foundation to guide the experimentalist in the design of meaningful experiments on the possible role of MF perturbations of radical chemistry on biological response.  相似文献   

8.
By using molecular dynamics simulation, we have investigated systematically the feasibility of continuous unidirectional water flux across a deformed single-walled carbon nanotube (SWNT) driven by an oscillating charge outside without osmotic pressure or hydrostatic drop. Simulation results indicate that the flux is dependent sensitively on the oscillating frequency of the charge, the distance of the charge from the SWNT, and the asymmetry of the water-SWNT system. A resonance-like phenomenon is found that the water flux is enhanced significantly when the period of the oscillation is close to twice the average hopping time of water molecules inside the SWNT. These findings are helpful in developing a novel design of efficient functional nanofluidic devices.  相似文献   

9.
Br~-对Belousov-Zhabotinsky(BZ)振荡反应起着控制作用。近来发现,一些有机物在被BrO_3~-氧化时,即使没有金属离子Ce~(3+),Mn~(2+),Fe(phen)_3~(2+),也可产生振荡反应,称为非催化BZ振荡反应。本文选择酪氨酸(Tyr)-BrO_3~--H_2SO_4 BZ振荡体系,对Br~-的影响作了系统的研究,对机理作了初步探索。  相似文献   

10.
An investigation into the evaporation of sessile droplets of latex and clay particle suspensions is presented in this work. The quartz crystal microbalance (QCM) has been used to study the interfacial phenomena during the drying process of these droplets. Characteristic changes of the crystal oscillating frequency and crystal resistance (damping of the oscillating energy) have been observed and related to the different stages of the evaporation process. Measurements have been made for latex particle sizes from 1.9 to 10 microm and for rough and polished crystals using drops from 0.3 to 1.5 microL. The behavior of the QCM is shown to depend strongly on the size of particles present and on the morphology of the crystal surface. One of the most striking features is a drastic damping of the oscillation energy and corresponding rise in frequency observed during the final stages of evaporation, particularly for the clay suspensions.  相似文献   

11.
Adhesion of micron-scale probes with model poly(dimethylsiloxane), PDMS, elastomers was studied with a depth-sensing nanoindenter under oscillatory loading conditions. For contacts between diamond indenters (radius R = 5 or 10 microm) and PDMS, force-displacement curves were highly reversible and consistent with Johnson-Kendall-Roberts (JKR) behavior. However, our experiments have revealed striking differences between the experimental measurements of tip-sample interaction stiffness and the theoretical JKR stiffness. The measured stiffness was always greater than zero, even in the reflex portion of the curve (between the maximum adhesive force and release), where the JKR stiffness is negative. This apparent paradox can be resolved by considering the effects of viscoelasticity of PDMS on an oscillating crack tip in a JKR contact. Under well described conditions determined by oscillation frequency, sample viscoelastic properties, and the Tabor parameter (with variables R, reduced elastic modulus, E*, and interfacial energy, deltagamma), an oscillating crack tip will neither advance nor recede. In that case, the contact size is fixed (like that of a flat punch) at any given point on the load-displacement cycle, and the experimentally measured stiffness is equal to the equivalent punch stiffness. For a fixed oscillation frequency, a transition between JKR and punch stiffness can be brought about by an increase in radius of the probe or a decrease in PDMS modulus. Additionally, varying the oscillation frequency for a fixed E*, R, and deltagamma also resulted in transition between JKR and punch stiffness in a predictable manner. Comparisons of experiments and theory for an oscillating viscoelastic JKR contact are presented. The storage modulus and surface energy from nanoscale JKR stiffness measurements were compared to calculated values and those measured with conventional nanoindentation and JKR force-displacement analyses.  相似文献   

12.
We have conducted a series of theoretical simulations of insulin chain-B under different electric field conditions. This work extends our previous studies of the isolated chain-B by including chain-A and revealing the effects of chemical stress. For this complete protein, we observed increased stability under ambient conditions and under the application of thermal stress, compared to isolated chain-B. On the other hand, the presence of chain-A enhanced the effects of the applied electric field. Under the static field, the presence of chain-A lowered the strength of the field necessary to stretch the protein. Under the oscillating fields, there was relatively less stretching due to the competitive alignment process of the three helical regions with respect to the field. At high field strengths, we observed that the high frequency oscillating field caused less secondary structure disruption than a lower frequency field of the same strength.  相似文献   

13.
Quantum simulations made using Floquet methods show that a charged particle can exchange energy with an oscillating potential barrier in discrete quanta , where is the frequency of oscillation. However, this exchange is classically forbidden because no other mass is included in the model, so that energy and momentum could not both be conserved in the absorption or emission of a photon. We define a semiclassical mechanism for these inelastic processes in which a photon may be absorbed by a charged particle moving against an intense static electric field, or emitted when the particle moves with this field. In this model, the particle has an energy loss Q in photon absorption, and an energy gain Q in photon emission. Then the particle travels a short distance at constant momentum until the energy increment Q is made up by the interaction with the static electric field, after which the particle resumes classical motion with the initial energy plus or minus exactly one quantum. We use the energy–time uncertainty relation to determine the minimum value for the static electric field that is required for this process, and this value is typical of the experimental conditions for laser-assisted scanning tunneling microscopy and laser-assisted field emission where the exchange of quanta is found to occur.  相似文献   

14.
We report an autonomous oscillatory micromotor system in which active colloidal particles form clusters, the size of which changes periodically. The system consists of an aqueous suspension of silver orthophosphate microparticles under UV illumination, in the presence of varying concentrations of hydrogen peroxide. The colloid particles first attract each other to form clusters. After a short delay, these clusters abruptly disperse and oscillation begins, alternating between clustering and dispersion of particles. After a cluster oscillation initiates, the oscillatory wave propagates to nearby clusters and eventually all the clusters oscillate in phase‐shifted synchrony. The oscillatory behavior is governed by an electrolytic self‐diffusiophoretic mechanism which involves alternating electric fields generated by the competing reduction and oxidation of silver. The oscillation frequency is tuned by changing the concentration of hydrogen peroxide. The addition of inert silica particles to the system results in hierarchical sorting and packing of clusters. Densely packed Ag3PO4 particles form a non‐oscillating core with an oscillating shell composed largely of silica microparticles.  相似文献   

15.
The resonance frequencies of 13 polygonal vibrations plus 11 axisymmetric vibrations have been observed for a 4.0-mg sessile mercury droplet submerged in 0.10 N KCl solution. When an input voltage with suitable dc and ac components was applied between the mercury droplet and a Ag/AgCl counter electrode, the mercury droplet could be observed under a microscope to oscillate. The mechanism that drives this droplet into oscillation differs from past electrokinetic mechanisms. Basically, the oscillating input voltage causes periodic changes in the interfacial surface tension which, at specific input frequencies, induce resonant vibrations within the droplet by interacting with its expanding and contracting surface area. Because there are two cycles of surface-area variation and two cycles of surface-tension variation per cycle of droplet oscillation, the most effective driving frequency (but not the only driving frequency) is twice the frequency of the droplet oscillation. This work was performed at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee.  相似文献   

16.
Evaporative self-assembly (ESA), based on the “coffee-ring” effect, is a versatile technique for assembling particle solutions into mesoscale patterns and structures on different substrates. ESA works with a wide variety of organic and inorganic materials, where the solution is a combination of volatile solvent and nonvolatile solute. Modified ESA methods, such as “stop-and-go flow coating,” use a programmed meniscus “stick–slip” motion to create mesoscale assemblies with controlled shape, size, and architecture. However, current methods are not scalable for increased production volumes or patterning large surface areas. We demonstrate a new ESA method, where an oscillating blade controls the meniscus depinning and drives the evaporative assembly of solutes at the pinned meniscus. Results show that oscillation frequency and substrate speed control time/distance intervals between successive meniscus depinning, and the assembly dimensions depend on solution concentration, oscillation frequency, substrate speed, and meniscus height. We report the mechanism of the meniscus depinning and the control over assembly cross-sectional dimensions. This advance provides a scalable ESA method with faster processing times and maintained advantages. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1545–1551  相似文献   

17.
乳液引发的电化学振荡   总被引:2,自引:0,他引:2  
丹尼尔电池;可逆;蓄电池;乳液引发的电化学振荡  相似文献   

18.
We investigate theoretically forces acting on a porous particle in an oscillating viscous incompressible flow. We use the unsteady equations describing the creeping flow, namely the Stokes equations exterior to the particle and the Darcy or Brinkman equations inside it. The effect of particle permeability and oscillation frequency on the flow and forces is expressed via the Brinkman parameter beta = a/square root(k) and the frequency parameter Y = square root(a(2)omega/2nu) = a/delta, respectively. Here a is particle radius, k is its permeability, omega is the angular frequency, delta is the thickness of Stokes layer (penetration depth) and nu is the fluid kinematic viscosity. It is shown that the oscillations interact with permeable structure of the particle and affect both the Stokes-like viscous drag and the added mass force components.  相似文献   

19.
We have developed a sensitive and economical method to directly detect bacteria, based on the interaction between the bacteria and specific antibodies attached to an oscillating surface. By monotonously increasing the amplitude of oscillation of a quartz crystal microbalance (QCM) coated with the antibody, the QCM can be used to sensitively detect the acoustic noise produced when the interactions between the bacteria and the surface were broken. We term this process rupture event scanning (REVS). The method is quantitative over at least 6 orders of magnitude and can detect as few as 10 bacteria. We demonstrate here that this approach allows one to arrange separation of bacteria and follow the process completion on the basis of the acoustic signal. Detection is not significantly affected by non-specific binding of sample contaminants and thus can be achieved both in buffer and in serum.  相似文献   

20.
The oscillating drop/bubble technique is increasingly popular for measuring the interfacial dilatational properties of surfactant/polymer-laden fluid/fluid interfaces. A caveat of this technique, however, is that viscous forces are important at higher oscillation frequencies or fluid viscosities; these can affect determination of the interfacial tension. Here, we experimentally quantify the effect of viscous forces on the interfacial-tension measurement by oscillating 100 and 200 cSt poly(dimethylsiloxane) (PDMS) droplets in water at small amplitudes and frequencies ranging between 0.01 and 1 Hz. Due to viscous forces, the measured interfacial tension oscillates sinusoidally with the same frequency as the oscillation of the drop volume. The tension oscillation precedes that of the drop volume, and the amplitude varies linearly with Capillary number, Ca=DeltamuomegaDeltaV/gammaa(2), where Deltamu=mu(D)-mu is the difference between the bulk Newtonian viscosities of the drop and surrounding continuous fluid, omega is the oscillation frequency of the drop, DeltaV is the amplitude of volume oscillation, gamma is the equilibrium interfacial tension between the PDMS drop and water, and a is the radius of the capillary. A simplified model of a freely suspended spherical oscillating-drop well explains these observations. Viscous forces distort the drop shape at Ca>0.002, although this criterion is apparatus dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号