首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregna-tion method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic re-forming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni20/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 oC, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni20/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.  相似文献   

2.
High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 oC. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil.  相似文献   

3.
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over anovel metal-doped catalyst of (Ca24Al28O64)4+¢4O-/Mg (C12A7-Mg). The catalytic steam reforming wasinvestigated from 250 to 850 ±C in the ˉxed-bed continuous °ow reactor. For the reforming of bio-oil, theyield of hydrogen of 80% was obtained at 750 ±C, and the maximum carbon conversion is nearly close to95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogenyield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics ofcatalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition ofcarbon in the catalytic steam reforming process.  相似文献   

4.
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.  相似文献   

5.
Toyo Engineering Corporation developed a steam reforming catalyst, which is four times as active as conventional catalysts, for hydrogen and syngas production from light natural gas. The catalyst has over three years experience in 1500 t/d class NH3 plant. Benefits, such as fuel saving, etc., by the developed catalyst are discussed.  相似文献   

6.
熊艳锋  张宁 《广州化学》2007,32(1):12-15
采用并流共沉淀法制备了不同配比的CuZnAl复合氧化物催化剂,通过X-衍射(XRD)和程序升温还原(TPR)等表征技术考察了焙烧温度对催化剂催化活性的影响,且考察了La助剂对催化剂催化活性的影响。结果表明,La的含量为15%时的的催化剂具有最高的催化活性。当反应温度为250℃,水醇摩尔比为1:1,焙烧温度为550℃时,甲醇转化率可高达95%左右。  相似文献   

7.
氢气作为一种高热值的清洁能源广泛地应用于工业中. 研究证明: 生物质通过化学过程可以转化为多种气体燃料(氢气), 液体燃料以及高附加值的化学品. 生物质作为一种环境友好型再生洁净能源, 其研究越来越受到关注. 本文旨在探讨利用生物油为原料, 通过水蒸汽重整方法制备富氢合成气的过程. 利用均匀浸渍的方法制备了一种高分散的碳纳米纤维促进的镍(Ni/CNFs)催化剂, 并将普通的Al2O3作为载体的Ni/Al2O3催化剂和Ni/CNFs作对比. 研究了重整温度以及水蒸汽和碳摩尔比(nS/nC)对生物油水蒸汽重整制氢的影响. 结果表明: 碳纳米纤维作为载体用于生物油水蒸汽重整制氢的效果要远优于普通的Al2O3载体, 利用22% Ni/CNFs 催化剂时, 在实验温度范围内(350-550℃), 最高生物油转化率和氢气产率分别达到了94.7%和92.1%, 通过研究重整条件以及对催化剂进行表征探讨了生物油在水蒸汽重整过程中催化剂的构效关系.  相似文献   

8.
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500 oC. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mole ratio of Ni:Cu:Mg:Ce:Al=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500 oC in the CSR, yield of 91.1% at 400 oC and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio-oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 oC. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.  相似文献   

9.
Ni/CuO-ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ray diffraction, temperature-programmed oxidation (TPO), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The effects of calcined temperature of support on coke deposition were studied. TPO, SEM and XPS results indicated there was no peak of higher temperature oxygen consumption on Ni/CuO-ZrO2-CeO2-Al2O3catalyst (support was calcined at 800 oC), which could lead to the deactivation of the catalyst. The carbon species were carbonate and inactive carbon (filamentous carbon species) on the surface of catalyst reacting for 40 h which perhaps led to the deactivation of the catalyst.  相似文献   

10.
研究了金属壁载PdZn/Al2O3/FeCrAl催化剂在不锈钢平板式微型制氢反应器中对甲醇水蒸气重整制氢的催化性能.结果表明,在反应温度为350℃,甲醇GHSV=1·6L/(g·h),水/醇摩尔比为1·2时,甲醇转化率可达100%,H2选择性达99%以上,出口CO含量低于0·5%,同时催化剂具有很好的稳定性.  相似文献   

11.
采用溶胶凝胶法合成了钙钛矿复合氧化物,负载氧化铜后得钙钛矿负载型催化材料,通过XRD(X射线衍射分析)、BET(比表面积测试)、H2-TPR(程序升温还原分析)、XPS(X射线光电子能谱)等手段对催化材料进行了表征,考察了不同种类钙钛矿负载纳米铜催化材料的结构、性质对甲醇水蒸气重整制氢性能的影响.结果显示,钙钛矿负载纳...  相似文献   

12.
胡勋  吕功煊 《化学进展》2010,22(9):1687-1700
随着能源枯竭和环境日益恶化,利用可再生的生物质裂解油或其模型分子重整制氢逐渐引起人们重视。本文结合国内外重整制氢的研究进展,从催化剂、反应过程和反应机理三个方面对生物质裂解油及其模型分子(乙醇、乙酸、乙二醇、丙三醇、葡萄糖和苯酚等)水蒸气重整制氢研究现状进行了回顾。在重整催化剂方面主要对贵金属和过渡金属催化剂的研究进展进行了总结,对一些新的重整过程如液相重整等也进行了介绍。在反应机理方面主要是对乙醇、乙酸、乙二醇和葡萄糖在重整反应中的反应路径进行了归纳。此外,对水蒸气重整反应中遇到的问题如积碳和副产物的产生等也进行了详细的分析,并对生物质制氢未来发展的方向进行了展望。  相似文献   

13.
The DS-1 catalyst for energy-saving natural gas steam reforming was prepared by using potash as a carbon-resistant additive and adding rare earth oxide. The catalyst demonstrated good reducibility,carbon resistance, activity and stability in aging tests and 500 h stability tests at low water/carbon ratios.  相似文献   

14.
Highly effective production of hydrogen from bio-oil was achieved by using a low-temperature electrochemical catalytic reforming approach over the conventional Ni-based reforming catalyst (NiO-Al2O3), where an AC electronic current passed through the catalyst bed. The promoting effects of current on the bio-oil reforming were studied. It was found that the performance of the bio-oil reforming was remarkably enhanced by the current which passed through the catalyst. The effects of currents on the microcosmic properties of the catalyst, including the Brunauer-Emmett-Teller (BET) surface area, pore diameter, pore volume, the size of the crystallites and the reduction level of NiO into Ni, were carefully characterized by BET, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscope. The desorption of the thermal electrons from the electrified catalyst was directly observed by the TOF (time of flight) measurements. The mechanism of the electrochemical catalytic reforming of bio-oil is discussed based on the above investigation.  相似文献   

15.
用传统湿式浸渍法制备了La2O3掺杂的商业γ-Al2O3负载的沼气重整催化剂Ni-Co/La2O3-γ-Al2O3, 并用程序升温加氢(TPH)、程序升温氧化(TPO)、程序升温表面反应(TPSR)、程序升温脱附(TPD)及脉冲实验对催化剂进行了表征. 结果表明, 沼气重整过程中Ni-Co/La2O3-γ-Al2O3催化剂上的表面碳物种主要来源于CH4的裂解, CO2的贡献很小. CH4裂解能够产生三种活性不同的碳物种, 即Cα、Cβ与Cγ. 随着反应的进行, Cα物种减小而Cβ与Cγ物种增加, 且Cγ物种能够转变为惰性的石墨碳. 重整反应过程中CH4与CO2的活化能相互促进. 催化剂表面的O物种与C反应生成CO或与CHx反应生成CHxO再分解为CO与吸附态的H物种, 可能是Ni-Co/La2O3-γ-Al2O3催化剂上沼气重整的速率控制步骤.  相似文献   

16.
A two-layer fixed-bed catalytic reactor for hydrogen production by steam reforming of ethanol is proposed. In this reactor ethanol is first converted to acetaldehyde over a Cu-based catalyst and then acetaldehyde is converted to a hydrogen-rich mixture over a Ni-based catalyst. It is shown that the use of such type of reactor prevents coke formation and provides hydrogen yields closed to equilibrium.  相似文献   

17.
采用溶胶凝胶法制备了CeO2-ZrO2固溶体载体涂层,再经浸渍法制备了高空速下性能较好的甲醇水蒸气重整制氢xCuO/CeO2-ZrO2/SiC整体催化剂.采用X射线衍射(XRD)、比表面积测试(BET)、H2程序升温还原(H2-TPR)和X射线光电子能谱(XPS)等手段对催化剂进行了表征,结果表明,催化剂活性主要与Cu...  相似文献   

18.
选择甲烷蒸汽重整催化剂用于直接内重整熔融碳酸盐燃料电池(DIR-MCFC)中,并考察了DIR-MCFC的性能,讨论了电池放电量、气体压力、燃料气进料水/碳比(S/C)等因素对该催化剂性能的影响.结果表明,重整催化剂能够满足电池放电需求;放电量大小影响电池内的H2含量,但对CH4含量影响不大;当气体压力为0.36MPa时...  相似文献   

19.
Co-Ni/SiO2催化剂催化乙酸重整制氢反应研究   总被引:3,自引:1,他引:3  
用浸渍法制备了一系列Co-Ni/SiO2催化剂,利用固定床反应器对催化剂在乙酸重整制氢反应中的催化性能进行了测试,详细研究了Co-Ni配比、活性组分负载量,反应温度,空速及水碳比对催化剂活性的影响.实验结果表明,该催化剂能高效催化乙酸重整反应.当Co和Ni摩尔比例为0.5∶1,活性组分质量百分含量为15%时催化剂呈现最好的催化活性,在水碳摩尔比为7.5∶1,温度大于500℃时可使乙酸完全转化,并且氢和二氧化碳选择性均达95%以上.  相似文献   

20.
毛丽萍  胡勋  吕功煊 《分子催化》2007,21(5):385-390
利用浸渍法制备了担载于γ-Al2O3上的Ni-Cr/MgAl2O4尖晶石催化剂,考察了催化剂对乙醇水蒸气重整的性能,结合X射线衍射(XRD)的表征结果,研究了催化剂的构效关系.实验结果表明,Ni、Cr担载量为15%和5%的催化剂对乙醇中低温水蒸气重整反应(SRE)表现出较高的催化活性和选择性,400℃时乙醇转化率可达到98.9%,氢气选择性为51.4%;450℃时,转化率可达到100%,氢气选择性为73.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号